Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T02:30:17.832Z Has data issue: false hasContentIssue false

On short-scale inviscid instabilities in flow past surface-mounted obstacles and other non-parallel motions

Published online by Cambridge University Press:  04 July 2016

F.T. Smith
Affiliation:
Department of Mathematics, University College , London
R. J. Bodonyi
Affiliation:
Department of Mathematical Sci, IUPUI, Indianapolis, USA

Summary

A theoretical investigation of short-scale inviscid instability in boundary-layer flow past an obstacle on a surface is described, with the application to trip-wire transition and wall roughness effects in mind. An analytical model and computational results show that the occurrence of an inflexion point in a local velocity profile is necessary but not sufficient for the instability to arise.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van Dyke, M.An Album of Fluid Motion’, Parabolic Press. 1982.Google Scholar
2. Davis, R. T. AIAA Paper No 84-1614, presented at AIAA 17th Fluid, Plasma, Laser Con, Snowmass, Col, USA. 1984.Google Scholar
3. Veldman, A. E. P. and Dijkstra, D. Proc7th Int. Conf. Num. Meths. Fluid Dvn. Standford, Calif, USA. 1980.Google Scholar
4. Smith, F. T. and Elliott, J. W. TO appear, Proc. R. Soc. A. 1985.Google Scholar
5. Tutty, O. R. and Cowley, S. J. Submitted to J. Fluid Mech. 1985.Google Scholar
6. Smith, F. T. and Burggraf, O. R. Proc. R. Soc. A. 1985 399 25.Google Scholar
7. Ryzhov, O. S. and Smith, F. T. Mathematika, December 1984.Google Scholar
8. Drazin, P. G. and Reid, W. H.Hydrodynamic Stability’, Cambr. U. Press. 1981.Google Scholar
9. Tollmen, W. Tech. Memo. Nat. Adv. Comm. Aero. Wash. No 792.1936.Google Scholar
10. Drazin, P. G. and Howard, L. N. J. FluidMech. 1962, 13, 257.Google Scholar
11. Smith, F. T., Papageorgiou, D. and Elliott, J. W. J. Fluid Mech. 1984, 146, 313.Google Scholar
12. Hall, P. and Smith, F. T. Stud, in Applied Math. 1982, 66, 241.Google Scholar
13. Prandtl, L. and Tietjens, O. ‘Applied Hydro. & Aero. Mechs., Dover. 1934.Google Scholar
14. Smith, F. T. J. Fluid Mech. 1973, 57, 803.Google Scholar
15. Eagles, P. M. and Weissman, M. A. J. Fluid Mech. 1975, 69, 241.Google Scholar
16. Smith, F. T. Proc. R. Soc. A. 1979, 366, 91.Google Scholar
17. Bouthier, M. J. Mecanique, 1973, 12, 75.Google Scholar
18. Hall, D. J. Ph.D. Thesis, University of Liverpool. 1968.Google Scholar
19. Smith, F. T., Brighton, P. W.M., Jackson, P. S. and Hunt, J. C. R. J. Fluid Mech. 1981. 113, 123.Google Scholar
20. Sykes, R. I. Proc. Roy. Soc. A. 1978, 361, 225.Google Scholar
21. Maslowe, S. A.Hydrod. Instabilities and the Transition to Turbulence’ (ed. Swinney, H. L. and Gollub, J. P.), Springer-Verlag. 1981. ch. 7.Google Scholar
22. Blackwelder, R. F. Phys. Fluids, 1983, 26 (10), 2807.Google Scholar
23. Greenspan, H. P. and Benney, D. J. J. Fluid Mech. 1963, 15, 133.Google Scholar