Published online by Cambridge University Press: 04 July 2016
Recent Researches have led to some possible explanations for thin aerofoil stalling behaviour. Apart from the Owen Klanfer criterion these are the reverse flow breakdown hypothesis of McGregor and Wallis's turbulent separation theory.
This note describes simple theoretical boundary layer calculations which indicate the feasibility of Wallis's hypothesis. In addition the results of some experiments on a thin two-dimensional aerofoil with various leading edge configurations with Reynolds number, based on model chord, of 1.8 million and 1 million support either of these hypotheses, depending on the leading edge configuration. It is concluded that thin aerofoil stall can occur broadly, through either of the suggested mechanisms, depending on conditions in the nose region.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.