Article contents
Nonlinear parameter estimation of airship using modular neural network
Published online by Cambridge University Press: 29 October 2019
Abstract
The prime focus of this work is to estimate stability and control derivatives of an airship in a completely nonlinear environment. A complete six degrees of freedom airship model has its aerodynamic model as nonlinear functions of angle of attack. Estimating the parameters of aerodynamic model in a nonlinear environment is challenging as it demands an exhaustive dataset that could cover the entire regime of operation of airship. In this work, data generation is achieved by simulating the mathematical model of airship for different trim conditions obtained from continuation analysis. The mathematical model is simulated using predicted parameter values obtained using DATCOM methodology. A modular neural network is then trained using back-propagation and Adam optimisation algorithm for each of the aerodynamic coefficients separately. The estimated nonlinear airship parameters are found to be consistent with the DATCOM parameter values which were used for open-loop simulation. This validates the proposed methodology and could be extended to estimate airship parameters from real flight data.
- Type
- Research Article
- Information
- Copyright
- © Royal Aeronautical Society 2019
References
REFERENCES
- 11
- Cited by