Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T18:07:14.989Z Has data issue: false hasContentIssue false

Multidisciplinary design optimisation of a fully electric regional aircraft wing with active flow control technology

Published online by Cambridge University Press:  28 October 2021

V. Mosca*
Affiliation:
Institute of Aircraft Design and Lightweight Structures, Technische Universität Braunschweig, Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation, Braunschweig, Germany
S. Karpuk
Affiliation:
Institute of Aircraft Design and Lightweight Structures, Technische Universität Braunschweig, Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation, Braunschweig, Germany
A. Sudhi
Affiliation:
Institute of Fluid Mechanics, Technische Universität Braunschweig, Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation, Braunschweig, Germany
C. Badrya
Affiliation:
Institute of Fluid Mechanics, Technische Universität Braunschweig, Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation, Braunschweig, Germany
A. Elham
Affiliation:
Institute of Aircraft Design and Lightweight Structures, Technische Universität Braunschweig, Cluster of Excellence SE2A – Sustainable and Energy-Efficient Aviation, Braunschweig, Germany

Abstract

The German research Cluster of Excellence SE2A (Sustainable and Energy Efficient Aviation) is investigating different technologies to be implemented in the following decades, to achieve more efficient air transportation. This paper studies the Hybrid Laminar Flow Control (HLFC) using boundary layer suction for drag reduction, combined with other technologies for load and structural weight reduction and a novel full-electric propulsion system. A multidisciplinary design optimisation framework is presented, enabling physics-based analysis and optimisation of a fully electric aircraft wing equipped with HLFC technologies and load alleviation, and new structures and materials. The main focus is on simulation and optimisation of the boundary layer suction and its influence on wing design and optimisation. A quasi three-dimensional aerodynamic analysis is used for drag estimation of the wing. The tool executes the aerofoil analysis using XFOILSUC, which provides accurate drag estimation through boundary layer suction. The optimisation is based on a genetic algorithm for maximum take-off weight (MTOW) minimisation. The optimisation results show that the active flow control applied on the optimised geometry results in more than 45% reduction in aircraft drag coefficient, compared to the same geometry without HLFC technology. The power absorbed for the HLFC suction system implies a battery mass variation lower than 2%, considering the designed range as top-level requirement (TLR).

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

MagniX. Electric propulsion system manufacturer, IHS Global, 2021, https://www.magnix.aero.Google Scholar
Jackson, P.A. Jane’s All the World’s Aircraft development production: 2014-15, IHS Global, 2014, p. 335.Google Scholar
Aigner, B., Stumpf, E., Hinz, A. and De Doncker, R.W. An integrated design framework for aircraft with hybrid electric propulsion, AIAA Scitech 2020 Forum, 2020, doi: 10.2514/6.2020-1501.Google Scholar
Horst, P., Elham, A. and Radespiel, R. Reduction of Aircraft Drag, Loads and Mass for Energy Transition in Aeronautics, September 2020, DLRK 2020.Google Scholar
Gröhlich, M., and Böswald, M. and Winter, R. An iterative eigenvalue solver for systems with frequency dependent material properties, Proceedings of the DAGA 2020, 2020, Hannover, Germany, pp 900–903.Google Scholar
Dähne, S, and Hühne, C. Gradient based structural optimization of a stringer stiffened composite wing box with variable stringer orientation, Advances in Structural and Multidisciplinary Optimization, 2018, pp 814826, doi: 10.1007/978-3-319-67988-4_62.CrossRefGoogle Scholar
Wunderlich, T.F., Dähne, S., Reimer, L., Schuster, A. and Brodersen, O. Global aero-structural design optimization of more flexible wings for commercial aircraft, AIAA AVIATION 2020 FORUM, 2020, 33, (3), pp 118, doi: 10.2514/6.2020-3170.Google Scholar
Rossow, C., Geyr, H. and Hepperle, M. The 1g-Wing, Visionary Concept or Naive Solution?, DLR-IB-AS-BS-2016-121, 2016, Braunschweig, Germany.Google Scholar
Liu, X. and Sun, Q. Gust load alleviation with robust control for a flexible wing, Shock and Vibration, 2016, 2016, doi: 10.1155/2016/1060574.Google Scholar
Khalil, K., Asaro, S. and Bauknecht, A. Active flow control devices for wing load alleviation, AIAA Aviation 2020 Forum, 2020, pp 122.Google Scholar
Bishara, M., Horst, P., Madhusoodanan, H., Brod, M., Daum, B. and Rolfes, R. A structural design concept for a multi-shell BlendedWing body with laminar flow control, Energies, 2018, 11, (2), p 383, doi: 10.3390/en11020383.CrossRefGoogle Scholar
Braslow, A.L. A history of suction-type laminar flow control with emphasis on flight research, Monographs in Aerospace History Number 13, NASA, 1999.Google Scholar
Krishnan, K., Bertram, O. and Seibel, O. Review of hybrid laminar flow control systems, Prog. Aerospace Sci., 2017, 93, pp 2452, doi: 10.1016/j.paerosci.2017.05.005.CrossRefGoogle Scholar
Spalart, P.R. and McLean, J.D. Drag reduction: enticing turbulence, and then an industry, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2011, 369, (1940), pp 15561569, The Royal Society Publishing, doi: 10.1098/rsta.2010.0369.CrossRefGoogle ScholarPubMed
Schrauf, G.H. and von Geyr, H. Simplified hybrid laminar flow control for the A320 fin-aerodynamic and system design, first results, AIAA Scitech 2020 Forum, 2020, p 1536.Google Scholar
van de Wal, H.J.B. Design of a Wing with Boundary Layer Suction Redesigning the Wing of the Eaglet, BIBB J, Master’s thesis, Delft University of Technology, 2010.Google Scholar
Beck, N. and Landa, T., Seitz, A., Boermans, L., Liu, Y. and Radespiel, R. Drag reduction by laminar flow control, Energies, 2018, 11, (1), p 252, Multidisciplinary Digital Publishing Institute, doi: 10.3390/en11010252.CrossRefGoogle Scholar
Karpuk, S., Yaolong, L. and Elham, A. Multi-fidelity design optimization of a long-range blended wing body aircraft with new airframe technologies, Aerospace, 2020, 7, (87), doi: 10.3390/aerospace7070087.CrossRefGoogle Scholar
Buckley, H.P., Zhou, B.Y. and Zingg, D.W. Airfoil optimization using practical aerodynamic design requirements, Journal of Aircraft, 2010, 47, (5), pp 17071719, doi: 10.2514/1.C000256.CrossRefGoogle Scholar
Gardner, B.A. and Selig, M.S. Airfoil design using a genetic algorithm and an inverse method, 41st Aerospace Sciences Meeting and Exhibit, 2003, American Institute of Aeronautics and Astronautics, Reno, Nevada, USA, doi: 10.2514/6.2003-43.CrossRefGoogle Scholar
Zhao, D.J., Wang, Y.K. and Cao, W.W. and Zhou, P. Optimization of Suction Control on an Airfoil Using Multi-island Genetic Algorithm, Procedia Engineering, Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 September 24–26, 2014 Shanghai, China, doi: 10.1016/j.proeng.2014.12.591.CrossRefGoogle Scholar
Nelson, P.A., Wright, M.C.M. and Rioual, J.L. Automatic control of laminar boundary-layer transition, AIAA J., 1997, 35, (1), pp 8590, doi: 10.2514/2.66.CrossRefGoogle Scholar
Sudhi, A., Elham, A. and Badrya, C. Coupled boundary layer suction and airfoil shape optimization for HLFC application, AIAA J., 2021, doi: 10.2514/1.J060480.Google Scholar
Tollmien, W., Schlichting, H., Görtler, H. and Riegels, F.W. Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Ludwig Prandtl Gesammelte Abhandlungen: zur angewandten Mechanik, Hydro- und Aerodynamik, Springer, 1961, Berlin, Heidelberg, pp 575–584, doi: 10.1007/978-3-662-11836-8_43.CrossRefGoogle Scholar
Schlichting, H. and Gersten, K. Boundary-Layer Theory, Springer, 2016.Google Scholar
Morkovin, M.V. On the many faces of transition, Viscous drag reduction, 1969, pp 1–31.CrossRefGoogle Scholar
Van Ingen, J.L. A suggested semi-empirical method for the calculation of the boundary layer transition region, Rapport VTH-74, 1956, Delft University of Technology.Google Scholar
Smith, A.M.O.Transition, pressure gradient and stability theory, Douglas Aircraft Co., Report ES 26388, 1956.Google Scholar
Redeker, G., Horstmann, K., Koester, H., Thiede, P. and Szodruch, J. Design for a natural laminar flow glove for a transport aircraft, Flight Simulation Technologies Conference and Exhibit, 1990, p 3043.CrossRefGoogle Scholar
Horstmann, K., Redeker, G., Quast, A., Dressler, U. and Bieler, H. Flight tests with a natural laminar flow glove on a transport aircraft, Flight Simulation Technologies Conference and Exhibit, doi: 10.2514/6.1990-3044.CrossRefGoogle Scholar
Boermans, L.M.M. Practical implementations of boundary layer suction for drag reduction and lift enhancement at low speed, Presentation at KATnet II Workshop, 2008, Ascot, UK.Google Scholar
Drela, M. XFOIL: an analysis and design system for low Reynolds number airfoils, Low Reynolds Number Aerodynamics, BIBB J, Springer, 1989, Berlin, Heidelberg, pp 112.Google Scholar
Bongers, J. Implementation of a new transition prediction method in xfoil, Predicting transition in suction boundary layers, Master’s thesis, Delft University of Technology, 2006.Google Scholar
Ferreira, C. Implementation of Boundary Layer Suction in XFOIL and Application of Suction Powered by Solar Cells at High Performance Sailplanes, Master’s thesis, 2002, Delft University of Technology.Google Scholar
Broers, R.S.W. Extending XFOIL and xSoaring for Suction-Type Boundary Layer Control Calculations, Master’s thesis, 2004, Delft University of Technology.Google Scholar
Van Ingen, J.L. Theoretical and experimental investigations of incompressible laminar boundary layers with and without suction, Doctoral thesis, 1965, Delft University of Technology.Google Scholar
Van Ingen, J.L. The eN method for transition prediction. Historical review of work at TU Delft, 38th Fluid Dynamics Conference and Exhibit, 2008, p 3830, doi: 10.2514/6.2008-3830.CrossRefGoogle Scholar
Arnal, D. Diagrammes de stabilité des profils de couche limite auto-semblables, en écoulement bidimensionnel incompressible, sans et avec courant de retour, Rapport Technique OA, 1986, 34/5018.Google Scholar
Schrauf, G. COCO-A program to compute velocity and temperature profiles for local and nonlocal stability analysis of compressible, conical boundary layers with suction, ZARM Technik report, 1998.Google Scholar
Lukaczyk, T., Wendroff, A., Colonno, M., Economon, T., Alonso, J., Orra, T. and Ilario, C. Suave: an open-source environment for multi-fidelity conceptual vehicle design, 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015, doi: 10.2514/6.2015-3087.CrossRefGoogle Scholar
Raymer, D.P. Aircraft Design: A Conceptual Approach, 6th ed, 2018, AIAA Education Series, American Institute of Aeronautics and Astronautics, p 1062, doi: 10.2514/4.104909.CrossRefGoogle Scholar
Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures, 1st ed, 2013, Butterworth-Heinemann.CrossRefGoogle Scholar
Torenbeek, E. Synthesis of Subsonic Airplane Design, 1976, Delft University Press, p 598.Google Scholar
Roskam, J. Airplane Design, 2nd ed, 2003, 1-8, Darcorporation.Google Scholar
McDonald, R.A. Advanced modeling in OpenVSP, 16th AIAA Aviation Technology, Integration, and Operations Conference Exposition, 13–17 June 2016, American Institute of Aeronautics and Astronautic, Washington DC, doi: 10.2514/6.2016-3282.CrossRefGoogle Scholar
Mariens, J., Elham, A. and van Tooren, M.J.L. Influence of weight modelling on the outcome of wing design using multidisciplinary design optimisation techniques, Aeronaut. J., 2013, 117, (1195), pp 871895, doi: 10.1017/S0001924000008563.CrossRefGoogle Scholar
Mariens, J., Elham, A. and van Tooren, M.J.L. Quasi-three-dimensional aerodynamic solver for multidisciplinary design optimization of lifting surfaces, J. Aircraft, 2014, 51, (2), pp 547558, doi: 10.2514/1.C032261.CrossRefGoogle Scholar
Jenkinson, L., Rhodes, D. and Simpkin, P. Civil Jet Aircraft Design, 1999, AIAA Education Series, p 418.CrossRefGoogle Scholar
Lambe, A.B. and Martins, J.R.R.A. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes, Struct. Multidiscip. Des. Optim., 2012, 46, (2), pp 273284, doi: 10.1007/s00158-012-0763-y.CrossRefGoogle Scholar
Drela, M. and Youungren, H. Athena Vortex-Lattice Method, 2020, Massachusetts Institute of Technology, Cambridge, MA, http://web.mit.edu/drela/Public/web/avl.Google Scholar
Meheut, M. and Bailly, D. Drag reduction: enticing turbulence, and then an industry, AIAA J., 2008, 46, (4), pp 847862, doi: 10.2514/1.29051.Google Scholar
Flandro, G.A and McMahon, H.M. Basic Aerodynamics: Incompressible Flow, 2012, Cambridge University Press.CrossRefGoogle Scholar
Elham, A., La Rocca, G. and van Tooren, M.J.L. Development and implementation of an advanced, design-sensitive method for wing weight estimation, Aerospace Sci. Technol., 2013, 29, (1), pp 100113, doi: 10.1016/j.ast.2013.01.012.CrossRefGoogle Scholar
Hepperle, M. Electric Flight - Potential and Limitations, Energy Efficient Technologies and Concepts of Operation, AVT-209 Workshop on Energy Efficient Technologies and Concepts Operation, 2012, https://elib.dlr.de/78726/.Google Scholar
Elham, A. Weight Indexing for Multidisciplinary Design Optimization of Lifting Surfaces, 2013.CrossRefGoogle Scholar