No CrossRef data available.
Published online by Cambridge University Press: 04 July 2016
In a recent paper, Portnoy discussed the properties of a slender-wing with a slender half-body of revolution mounted beneath it. Another configuration of the same type has a fuselage of rectangular cross-section underneath the wing. The present note gives results for the lift on this class of configurations in attached flow and compares it with that for other wing-body combinations.
Ward's slender-body theory describes the flows about appropriately slender configurations where viscous effects are negligible (i.e. the boundary-layer thickness is small in comparison with the transverse dimensions of the body and no separation occurs upstream of the station under consideration). A restriction of the simplified version used in this note is that no element of a load-bearing surface may be upstream of that station. This implies that the wing span must not decrease in a spanwise direction. Another assumption we make is that no leading-edge separation occurs.