Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T22:56:20.591Z Has data issue: false hasContentIssue false

Implicit large eddy simulation of ship airwakes

Published online by Cambridge University Press:  03 February 2016

B. Thornber
Affiliation:
M. Starr
Affiliation:
Department of Fluid Mechanics and Computational Science, Cranfield University, Bedfordshire, UK
D. Drikakis
Affiliation:
Department of Fluid Mechanics and Computational Science, Cranfield University, Bedfordshire, UK

Abstract

Implicit large eddy simulations (ILES) of two different Royal Navy ships have been conducted as part of the UK Ship/Air Interface Frame-work project using a recently developed very high order accuracy numerical method. Time-accurate CFD data for fourteen flow angles was produced to incorporate into flight simulators for definition of safe helicopter operating limits (SHOLs). This paper discusses the flow phenomenology for the different wind directions and where possible reports on the validation of the ILES results for mean and fluctuating velocity components and spectra against experimental data.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2010 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bogstad, M.C., Habashi, W.G., Akel, I. and Ait-Ali-Yahia, D.. Computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators, J Aircr, 2002, 39, pp 830838.Google Scholar
2. Boris, J.P., Grinstein, F.F., Oran, E.S. and Kolbe, R.L.. New insights into large eddy simulation. Fluid Dyn Res, 1992, 10, pp 199228, doi:10.1016/0169-5983(92)90023-P.Google Scholar
3. Castro, I.P. and Robins, A.G.. The flow around a surface-mounted cube in uniform and turbulent streams, J Fluid Mech, 1977, 77, pp 307335. doi:10.1017/S0022112077000172.Google Scholar
4. Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, Y., Zhou, A.A., Porter, D.H. and Woodward, P.R.. Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation, Phys Fluids, 2002, 14, (10), pp 36923709.Google Scholar
5. Cox, I., Turner, G., Finlay, B. and Duncan, J., The ship/air interface framework (SAIF) project: Dynamic challenges. In Maritime Operations of Rotorcraft, 11-12 June 2008.Google Scholar
6. Czerwiec, R.M. and Polsky, S.A., LHA airwake wind tunnel and CFD comparison with and without bow flap. AIAA 2004-4832, 2004.Google Scholar
7. Dalziel, S.B., Linden, P.F. and Youngs, D.L.. Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J Fluid Mech, 1999, 399, pp 148.Google Scholar
8. Drikakis, D.. Advances in turbulent flow computations using high-resolution methods, Prog Aerosp Sci, 2003, 39, pp 405424. doi:10.1016/S0376-0421(03)00075-7.Google Scholar
9. Drikakis, D., Fureby, F., Grinstein, F., Hahn, M. and Youngs, D.. Miles of transition to turbulence in the Taylor-Green vortex system. In ERCOFTAC workshop on direct and large eddy simulation-6, p 133, September 2006.Google Scholar
10. Drikakis, M.D., Hahn, A.Mosedale and Thornber, B.. Large eddy simulation using high-resolution and high-order methods, Phil Trans R Soc A, 2009, 367, 1899, pp 29852997. doi:10.1098/rsta.2008.0312.Google Scholar
11. Drikakis, D. and Rider, W., High-Resolution Methods for Incompressible and Low-Speed Flows, SpringerVerlag, Cambridge, UK, 2004.Google Scholar
12. Forrest, J.S., Owen, I., Padfield, G.D. and Hodge, S.J.. Detached-eddy simulation of ship airwakes for piloted helicopter flight simulation. In Proceedings of the International Aerospace CFD Conference, 18-19 June 2007.Google Scholar
13. Fureby, C. and Grinstein, F.F.. Large eddy simulation of high-Reynolds-number free and wall-boundedflows, J Comput Phys, 2002, 181, pp 6897. doi:10.1006/jcph.2002.7119.Google Scholar
14. Fureby, C., Tabor, F., Weller, H.G. and Gosman, A.D.. A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys Fluids, 1997, 9, (5), pp 14161429.Google Scholar
15. Godunov, S.K.. A finite-difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb, 1959, 47, pp 271295.Google Scholar
16. Gordnier, R.E. and Visbal, M.R.. Compact difference scheme applied to simulation of low-sweep delta wing flow. AIAA J, 2005, 43, (8), pp 17441752.Google Scholar
17. Grinstein, F.F. and Fureby, C.. Recent progress on MILES for high Reynolds number flows, J Fluid Eng, 2002, – T. Asme, 848:848861. doi:10.1115/1.1516576.Google Scholar
18. Grinstein, F.F., Margolin, L.G. and Rider, W.J. (Ed) Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2007.Google Scholar
19. Guillot, M.J. and Walker, M.A., Unsteady analysis of the air wake over the lpd-17, AIAA 2000-4125, 2000.Google Scholar
20. Hahn, M. and Drikakis, D.. Large eddy simulation of compressible turbulence using high-resolution methods, Int J Numer Meth Fl, 2005, 49, pp 971977. doi:10.1002/fld.882.Google Scholar
21. Hahn, M. and Drikakis, D.. Assessment of large-eddy simulation of internal separated flow. J Fluids Engineering, 2009, 131, 071201–071215.Google Scholar
22. Hahn, M. and Drikakis, D.. Implicit large-eddy simulation of swept wing flow using high-resolution methods, Int J Numer Meth Fl, 2009, 47, pp 618629.Google Scholar
23. Hickel, S., Adams, N.A. and Domaradzki, J.A.. An adaptive local deconvolution method for implict LES, J Comput Phys, 2006, 213, pp 413436. doi:10.1016/j.jcp.2005.08.017.Google Scholar
24. Jeong, J. and Hussain, F.. On the identification of a vortex, J Fluid Mech, 1995, 285, pp 6994.Google Scholar
25. Jordan, S.A.. A large-eddy simulation methodology in generalized curvilinear coordinates, J Comput Phys, 1999, 148, (2), pp 322340.Google Scholar
26. Kim, K.H. and Kim, C.. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows part II: Multidimensional limiting process, J Comput Phys, 2005, 208, pp 570615. doi:10.1016/j.jcp.2005.02.022.Google Scholar
27. Kolmogorov, A.N.. The local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl Akad Nauk SSSR, 1941, 30, p 299.Google Scholar
28. Krajnovic, S.. Large eddy simulation of flows around ground vehicles and other bluff bodies. Philos T R Soc A, 2009, 367, pp 29172930, doi: 10.1098/rsta.2009.0021.Google Scholar
29. Lesieur, M. and Metais, O.. New trends in large-eddy simulations of turbulence, Annu Rev Fluid Mech, 1996, 28, pp 4582.Google Scholar
30. Margolin, L.G., Smolarkiewicz, P.K. and Sorbjan, Z.. Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D, 1999, 133, pp 390397. doi:10.1016/S0167-2789(99)00083-4.Google Scholar
31. Margolin, L.G., Smolarkiewicz, P.K. and Wyszogrodzki, A.A.. Implicit turbulence modelling for high Reynolds number flows, J Fluids Eng, 2002, 124, pp 862867. doi:10.1063/1.1522379.Google Scholar
32. Martinuzzi, R. and Tropea, C.. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow, J Fluids Eng, 1993, 115, (1), pp 8592.Google Scholar
33. Mosedale, A. and Drikakis, D.. Assessment of very high-order of accuracy in les models, J Fluids Eng, 2007, 129, (1), pp 4971503.Google Scholar
34. Polsky, S.A., A computational study of unsteady ship airwake. AIAA 2002-1022, 2002.Google Scholar
35. Polsky, S.A., CFD predication of airwake flowfields for ships experiencing beam winds. AIAA 2003-3657, 2003.Google Scholar
36. Pope, S.B., Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.Google Scholar
37. Porter, D.H., Woodward, P.R. and Pouquet, A.. Inertial range structures in decaying compressible turbulent flows, Phys Fluids, 1998, 10, (1), pp 237245.Google Scholar
38. Qinetiq, Private Communication, 2007.Google Scholar
39. Reddy, K.R., Toffoletto, R. and Jones, K.R.W.. Numerical simulation of ship airwake, Comput Fluids, 2000, 29, pp 451465.Google Scholar
40. Roper, D.M., Owen, I., Padfield, G.D. and Hodge, S.J.. Integrating CFD and piloted simulation toquantify ship-helicopter operating limits, Aeronaut J, 2006, 110, (1109), pp 419428.Google Scholar
41. Saathoff, P.J. and Melbourne, W.H.. Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble, J Fluid Mech, 1997, 337, pp 124.Google Scholar
42. Sagaut, P., Large Eddy Simulation for Incompressible Flows, Springer Verlag, 2001.Google Scholar
43. Sedighi, K. and Farhad, M.. Three-dimensional study of vortical structure around a cubic bluff body in a channel, Facta Universitatis, 2006, 4, (1), pp 116.Google Scholar
44. Sezer-Uzol, N., Sharma, A. and Long, L.N.. Computational fluid dynamics simulations of ship airwake, J Aerospace Eng, 2005, 219(G), pp 369392.Google Scholar
45. Sharma, A. and Long, L.N., Airwake simulations on an LPD 17 ship, AIAA 2001-2589, 2001.Google Scholar
46. Shipman, J., Arunajatesan, S., Menchini, C. and Sinha, N., Ship airwake sensitivities to modeling parameters, AIAA 2005-1105, 2005.Google Scholar
47. Smolarkiewicz, P.K. and Margolin, L.G.. Mpdata: a finite difference solver for geophysical flows, J Comput Phys, 1998, 140, (2), pp 459480. doi:10.1006/jcph.1998.5901.Google Scholar
48. Spiteri, R.J. and Ruuth, S.J.. A class of optimal high-order strong-stability preserving time discretization methods, SIAM J Num Anal, 2002, 40, (2), pp 469491. doi = 10.1137/S0036142901389025.Google Scholar
49. Syms, G.F.. Numerical simulation of frigate airwakes, Int J Numer Meth Fluids, 2004, 18, (2), pp 199207. doi: 10.1080/10618560310001634159.Google Scholar
50. Tai, T.C.. Simulation and analysis of LHD ship airwake by Navier Stokes method. In Proceedings of the NATO RTO Symposium on Fluid Dynamics Problems of Vehicles Operating near or in the Air-Sea Interface, 5-8 October 1998.Google Scholar
51. Thornber, B. and Drikakis, D.. Implicit large eddy simulation of a deep cavity using high resolution methods. AIAA J, 2008. doi:10.2514/1.36856.Google Scholar
52. Thornber, B., Drikakis, D., Williams, R. and Youngs, D.. On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J Comput Phys, 2008, 227, pp 48534872. doi:10.1016/j.jcp.2008.01.035.Google Scholar
53. Thornber, B., Drikakis, D., Youngs, D. and Williams, R.J.R.. The influence of initial conditions on turbulent mixing due to richtmyer-meshkov instability, J Fluid Mech, 2010, 654, pp 99139. doi:10.1017/S0022112010000492.Google Scholar
54. Thornber, B., Mosedale, A. and Drikakis, D.. On the implicit large eddy simulation of homogeneous decaying turbulence, J Comput Phys, 2007, 226, pp 19021929. doi:10.1016/j.jcp.2007.06.030.Google Scholar
55. Thornber, B., Mosedale, A., Drikakis, D., Youngs, D. and Williams, R.. An improved reconstruction method for compressible flows with low Mach number features, J Comput Phys, 2008, 227, pp 48734894. doi:10.1016/j.jcp.2008.01.036.Google Scholar
56. Tissera, S., Titarev, V. and Drikakis, D., Chemically reacting flows around a double-cone, including ablation effects. AIAA-2010-1285, page 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010.Google Scholar
57. Toro, E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Cambridge, UK, 1997.Google Scholar
58. Van Leer, B.. Towards the ultimate conservative difference scheme.IV. A new approach to numerical convection. J Comput Phys, 1977, 23, pp 276299, doi:10.1016/0021-9991(77)90094-8.Google Scholar
59. Volpe, G.. Performance of compressible flow codes at low Mach number, AIAA J, 1993, 31, pp 4956.Google Scholar
60. cYOUNGS, D.L.. Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys Fluids A, 1991, 3, (5), pp 13121320.Google Scholar
61. Youngs, D.L., Application of MILES to Rayleigh-Taylor and Richtmyer-Meshkov mixing. AIAA-2003-4102, June 2003.Google Scholar
62. Youngs, D.L. and Williams, R.J.R.. Turbulent mixing in spherical implosions. accepted, Int J Numer Meth Fl, 2007, USA.Google Scholar
63. Zan, S.. Technical comment on ‘computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators’, J Aircr, 2003, 40, (5), p 1007.Google Scholar
64. Zhang, F., Xu, H. and Ball, N.G., Numerical simulation of unsteady flow over SFS 2 ship model. AIAA 2009-81, 2009.Google Scholar