Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T08:08:53.743Z Has data issue: false hasContentIssue false

Developments in mathematical models of human pilot behaviour

Published online by Cambridge University Press:  04 July 2016

O. H. Gerlach*
Affiliation:
Technische Hogeschool, Delft, The Netherlends

Extract

By way of introduction, I suggest you consider for a moment of four aircraft as dissimilar as a small general aviation aircraft, a large transport such as the Airbus, a glider and finally a fighter aircraft such as the Tornado. As regards handling in the air of these widely differing flying machines, their most significant common quality is perhaps that they can all be flown by a human pilot.

In the definition of the desirable handling qualities of these aircraft, one might—in complete innocence—expect to find a description of such desirable qualities in terms of the behaviour, capabilities and limitations of the human pilot, which one would, of course, expect to be independent of class or category of aircraft.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doetsch, K. H. The proper symbiosis of the human pilot and automatic flight control. Eighteenth Lanchester Memorial Lecture. The Aeronautical Journal, Vol 79, p 247, June 1975.Google Scholar
2. Lanchester, F. W. Discontinuities in the normal field of vision. Journal of Anatomy, Vol 68, p 224, 1934.Google Scholar
3. Tustin, A. The nature of the operator's response in manual control and its implications for controlled design. JIEE, Vol 94, Part II A, No 2, 1947.Google Scholar
4. Mcruer, D. T., Krendel, E. S., Reisener, W. Jr. Human pilot dynamics in compensatory systems. AFFDL TR-65-15, 1965.Google Scholar
5. Mcruer, D. T., Krendel, E. S. The human operator as a servo system element. J. Franklin Institute, Vol 267, No 5, p 381, May 1959 and No 6, p 511, June 1959. 1.Google Scholar
6. Elkind, J. I. A survey of the development of models for the human controller, in: Langford, R. C., Mundo, C. J., eds, Guidance and Control-II, Vol 13 of Progress in Astronautics and Aeronautics, p 263, Academic Press, New York, 1964.Google Scholar
7. Mcruer, D. T., Krendel, E. S. Mathematical models of human pilot behaviour. AGARDograph No 188, Neuilly, 1974.Google Scholar
8. Mcruer, D. T., Jex, H. R. A review of quasi-linear pilot models. IEEE Trans, Vol HFE-8, No 3, p 231, 1967.Google Scholar
9. Levison, W. H., Baron, S., Kleinman, D. L. A model for controller remnant. IEEE Trans, Vol MMS-10, No 4, p 137, 1969.Google Scholar
10. Stapleford, R. L., Mcruer, D. T., Magdeleno, R. E. Pilot describing function measurement in a multiloop task. NASA CR-542, 1966.Google Scholar
11. Levison, W. H., Elkind, J. I. Studies of multivariable manual control systems: two-axis compensatory systems with separated displays and controls. NASA CR-875, 1967.Google Scholar
12. Kleinman, D. L., Baron, S., Levison, W. H. An optimal control model of human response. Part I: Theory and validation. Automatica, Vol 6, p 357, 1970.Google Scholar
13. Baron, S., Kleinman, D. L., Levison, W. H. An optimal control model of human response. Part II: Prediction of human performance in a complex task. Automatica, Vol 6, p 371, 1970.Google Scholar
14. Kleinman, D. L., Baron, S. Manned vehicle system analysis by means of modern control theory. NASA CR-1753, 1971.Google Scholar
15. Wewerinke, P. H. Effort involved in single- and two-axis control systems. NLR TR 75060 U, Amsterdam, 1975.Google Scholar
16. Kleinman, D. L., Baron, S. Analytic evaluation of display requirements for approach to landing. NASA CR-1952, 1971.Google Scholar
17. Merhav, S. J. An optimality in human control tasks. ICAS Paper No 76-54, Ottawa, 1976.Google Scholar
18. Curry, R. E., Young, L. R., Hoffman, W. C, Kugel, D. L. A pilot model with visual and motion cues, in: Twelfth Annual Conference on Manual Control. NASA TM X-73170, p 851, 1976.Google Scholar
19. Baron, S., Kleinman, D. L. The human as an optimal controller and information processor. NASA CR-1151, 1968.Google Scholar
20. Levison, W. H., Tanner, R. B. A control-theory model for human decision making. NASA CR-1953, 1971.Google Scholar
21. Levison, W. H., Elkind, J. I., Ward, J. L. Studies of multivariable manual control systems: a model for task interference. NASA CR-1746, 1971.Google Scholar
22. Wewerinke, P. H. Human control and monitoring —models and experiments. NLR MP 76015 U, Amsterdam, 1976.Google Scholar
23. Sheridan, T. B., Ferrell, W. B. Man-machine systems: Information, control, and decision models of human performance. The MIT Press, Cambridge, Mass., 1974.Google Scholar
24. Rasmussen, J. Outlines of a hybrid model of the process plant operator, in: NATO Science Committee Symposium on Monitoring Behavior and Supervisory Control, Berchtesgaden, p 288, 1976.Google Scholar
25. Pirenne, M. H. Vision and the Eye, Science Paperback SP 47, Chapman and Hall, London. 1971.Google Scholar
26. Haber, R. N., Hershenson, M. The Psychology of Visual Perception. Holt, Rinehart and Winston, London, 1974.Google Scholar
27. Corso, J. F. The Experimental Psychology of Sensory Behavior. Holt, Rinehart and Winston, London, 1967.Google Scholar
28. Kornhuber, H. H. (ed). Handbook of Sensory Physiology. Vol VI/2: Vestibular System, Part 2. Springer Verlag, Berlin, 1974.Google Scholar
29. Arbib, M. A. On modelling the nervous system, in: Principles and practice of bionics. AGARD CP-44, Neuilly, 1970.Google Scholar
30. Eccles, J. C. The Understanding of the Brain. McGraw-Hill. New York, 1973.Google Scholar
31. Serebriakoff, B. Brain. Davis-Poynter, London, 1975.Google Scholar
32. Stadler, M., Seeger, F., Raeither, A. Psychologie der Wahrnehmung. Juventa Verlag, München, 1975.Google Scholar
33. Gibson, J. J. The Perception of the Visual World. Houghton Mifflin, Boston, 1950.Google Scholar
34. Gibson, J. J. The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston, 1966.Google Scholar
35. Hubel, D. H., Wiesel, T. N. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J of Physiology, Vol 160, p 106, 1962.Google Scholar
36. Hubel, D. H. The visual cortex of the brain. Scientific American, Vol 222, p 54, November 1963.Google Scholar
37. Craik, K. J. W. The Nature of Explantion. Cambridge University Press, 1943.Google Scholar
38. Mckay, D. M. Internal representation of the external world. Paper presented at the AGARD Avionics Panel Symposium on Natural and Artificial Logic Processors, Athens, 1963.Google Scholar
39. Kelley, C. R. Manual and Automatic Control. John Wiley and Sons, New York, 1968.Google Scholar
40. Gregory, R. L. On how so little information controls so much behaviour, in: Towards a theoretical biology, 2 sketches. Waddington, C. H., ed, Edinburgh University Press, 1969.Google Scholar
41. Arbib, M. A. The Metaphorical Brain. John Wiley and Sons, New York, 1972.Google Scholar
42. Moray, N. Attention, control, and sampling behaviour, in: NATO Science Committee Symposium on Monitoring Behavior and Supervisory Control, Berchtesgaden, p 168, 1976.Google Scholar
43. Magdaleno, R. E., Mcruer, D. T., Moore, G. P. Small pertubation dynamics of the neuromuscular system in tracking tasks. NASA CR-1212, 1968.Google Scholar
44. Drilles, R., Contini, R., Bluestein, M. Body segment parameters in: Selected articles from Artificial Limbs. R. E. Krieger Publishing Co, Huntingdon, N.Y., 1970.Google Scholar
45. Dreyfuss, H. Measure of man. Whitney Publications, New York, 1959.Google Scholar
46. Magdaleno, R. E., Mcruer, D. T. Experimental validation and analytical elaboration for models of the pilot's neuromuscular subsystem in tracking tasks. NASA CR-1757, 1971.Google Scholar
47. Bekey, G. A. The human operator as a sampled-data system. IRE Trans HFE-3, p 43, September 1962.Google Scholar
48. Young, L. R., Stark, L. Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans HFE-4, No 1, p 38, 1963.Google Scholar
49. Lemay, L. P., Westcott, J. H. The simulation of human operator tracking using an intermittent model. Proc IEEE Symposium Human Factors in Electronics, 1962.Google Scholar
50. Allen, R. W., Clement, W. F., Jex, H. R. Research on display scanning, sampling and reconstruction using separate main and secondary tracking tasks, NASA CR-1569, 1970.Google Scholar
51. Bekey, G. A., Biddle, J. M. The effect of a random-sampling interval on a sampled-data model of the human operator. Third Annual NASA-University Conference on Manual Control. NASA SP-144, 1967.Google Scholar
52. Shannon, C. E., Weaver, W. The Mathematical Theory of Communication. The University of Illinois Press, Urbana, 1964.Google Scholar
53. Kahneman, D. Attention and Effort. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.Google Scholar
54. Geratewohl, S. J. Definition and measurement of perceptual and mental workload in aircrews and operators of air force weapon systems: A status report, in: Highermental functioning in operational environments. AGARD CP-181, Neuilly, 1975.Google Scholar
55. Cooper, C. E., Harper, R. P. The use of pilot ratings in the evaluation of aircraft handling qualities. NASA TN-5153, 1969.Google Scholar
56. Mcdonnell, J. D. Pilot rating techniques for the estimation and evaluation of handling qualities. AFFDL TR-68-76, 1968.Google Scholar
57. Mcdonnell, J. D. An application of measurement methods to improve the quantitative nature of pilotrating scales. IEEE Trans Vol MMS-10, No 3, p 81, 1969.Google Scholar
58. Jahns, D. W. A concept of operator workload in manual vehicle operations. Forschungsinstitut für Anthropo-technik, Forschungsbericht Nr 14, Meckenheim, 1973.Google Scholar
59. Howitt, J. S. Flight-deck workload studies in civil transport aircraft, in: Measurement of aircraft performance. AGARD CP-56, Neuilly, 1969.Google Scholar
60. Bernotat, R. K., Wanner, J. C. Pilot workload, in: Handling qualities criteria. AGARD CP-106, Neuilly, 1971.Google Scholar
61. Firth, P. A. Psychological factors influencing the relationship between cardiac arrythmia and mental load. Ergonomics, Vol 16, No 1, p 5, 1973.Google Scholar
62. Dillow, J. D. The paper pilot—a digital computer program to predict pilot rating for the hover task. AFFDL TR-70-40, 1971.Google Scholar
63. Anderson, R. O. Theoretical pilot rating predictions, in: Handling qualities criteria. AGARD CP-106, Neuilly, 1971.Google Scholar
64. Christensen, J. M. Human engineering considerations in systems development, in: Measurement of man at work. Singleton, W. T., Fox, J. G., Whitfield, D., eds. Taylor and Francis, London, 1971.Google Scholar