Published online by Cambridge University Press: 12 October 2016
This paper presents identification, control synthesis and simulation results for an YF-22 aircraft model designed, built, and instrumented at West Virginia University. The ultimate goal of the project is the experimental demonstration of formation flight for a set of 3 of the above models. In the planned flight configuration, a pilot on the ground maintains controls of the leader aircraft while a wingman aircraft is required to maintain a pre-defined position and orientation with respect to the leader. The identification of both a linear model and a nonlinear model of the aircraft from flight data is discussed first. Then, the design of the control scheme is presented and discussed with an emphasis on the amount of information, relative to the leader aircraft, needed by the wingman to maintain formation. Using the developed nonlinear model, the control laws for a maneuvered flight of the formation are then simulated with Simulink® and displayed with the Virtual Reality Toolbox®. Simulation studies have been performed to evaluate the effects of specific parameters and the system robustness to atmospheric turbulence. The conclusions from this analysis have allowed the formulation of specific guidelines for the design of the electronic payload for formation flight.