Published online by Cambridge University Press: 24 March 2022
Variable camber flap technology can adjust the spanwise circulation distribution, thereby reducing the induced drag. Therefore, the concept of variable camber flap is introduced into the design of propeller aircraft wing, and the design for drag reduction of propeller aircraft is carried out. The numerical simulation of the propeller aircraft is carried out by using the actuator disc method with non-uniform distribution of radial and circumferential loads. Through the unsteady simulation of a single propeller, the aerodynamic load on a periodic propeller is extracted as a boundary condition to the steady simulation of the full aircraft. The load extracted by the actuator disc is compared with the unsteady simulation result, which verifies the reliability of the method. The design for drag reduction at cruise and climb design conditions are respectively carried out with the variable camber flap technology. The variable camber cruise configuration is evaluated at both the begin and end cruise conditions. The results show that, after the flaps deflecting at a small angle according to the circulation distribution, the camber distribution of the wing is adjusted to make the circulation distribution closer to the elliptical circulation distribution. At the design cruise condition, the drag coefficient is reduced by 1.4 counts, and the lift-drag ratio increase by 0.1. At both begin and end cruise conditions, the drag coefficient decreases by 1 count, and the lift-drag ratio increases by 0.07. At the design climb condition, the drag coefficient decreases by 1 count, and the lift-to-drag ratio increases by 0.09.