Article contents
A coupled Euler-Lagrange CFD modelling of droplets-to-film
Published online by Cambridge University Press: 13 October 2017
Abstract
In this paper, a droplet to film interaction model technique is presented. In the proposed approach, the liquid and gas continua are modelled using an enhanced Volume-of-Fluid (VoF) technique while the droplets are tracked using a Lagrangian framework and are coupled to the Eulerian phases using source terms. The eventual target application is an aeroengine bearing chamber in which oil is found as droplets, shed from the bearings, splashing on impact, separated from wall surfaces at obstacles or simply re-entrained, and as a continuum oil film coating the bearing chamber outer walls which it also cools. In finite volume Computational Fluid Dynamics (CFD) techniques, a prohibitively large number of cells would be required to describe the details of the droplet impact phenomenon. Based on published correlations, the splashing droplets are created and tracked as Lagrangian particles. The flowing film and the gas continua are handled with an enhanced VoF technique.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2017
Footnotes
A version of this paper was presented at the ISABE 2017 Conference, 3-8 September 2017, Manchester, UK.
References
REFERENCES
- 10
- Cited by