Article contents
Computational simulation of wing rock in three degrees-of-freedom for a generic fighter with chine-shaped forebody
Published online by Cambridge University Press: 04 July 2016
Abstract
Modern fighter aircraft have been associated with lateral self-excited limit cycle oscillation known as ‘wing rock’. Simulations of wing rock have been encouraged to develop a complete understanding of the fluid mechanism that triggers and drives the oscillation, as well as for prediction purposes. Previous simulations of wing rock in wind/water tunnels were almost exclusively limited to a single degree-of-freedom in roll, due to the difficulty encountered in mounting the model to freely oscillate in more than one degree-of-freedom. Numerical simulations, utilising computational fluid dynamics, were also limited to roll-only degree-of-freedom. The loss of simulation accuracy due to the reduction of the actual wing rock degrees-of-freedom to roll-only has not as yet been fully investigated. In this study wing rock is numerically simulated in three degrees-of-freedom: roll, sideslip, and vertical motion for a generic fighter model. The unsteady Euler equations are coupled with the rigid-body dynamic equations through an innovative sub-iteration algorithm to simultaneously solve the coupled equations. The effect of including the sideslip and vertical degrees-of-freedom was found to delay the onset angle-of-attack of wing rock by 5° and reduce the limit cycle amplitude by about 50% with the frequency remained almost unchanged.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2003
References
- 4
- Cited by