Published online by Cambridge University Press: 04 July 2016
Recent interest in aircraft vortex wakes has highlighted the need to identify appropriate algorithms for their simulation. The problem is not well-suited to grid-based techniques, due to the large domain and the need to avoid introducing artificial viscosity. A promising alternative is offered by Lagrangian formulations. This work aims to assess the usefulness of one such approach - the 2D vortex method -via comparison with experimental results. One in-house and two external (from DLR and ONERA) data sets are used. The results show generally good agreement in vortex locations and size, with the calculation performing best when initialised downstream of the strongly-three-dimensional trailing edge region. The neglect of viscosity can lead to some asymmetry in the vortex cores, but, even here, excellent agreement can be obtained when the field is integrated to give circulation (as a function of radius). The 2D vortex method is thus an accurate and efficient tool for wake vortex prediction.