Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T10:53:17.626Z Has data issue: false hasContentIssue false

Aerodynamic characteristics of different configurations of mechanically deployable aerodynamic decelerator in subsonic region

Published online by Cambridge University Press:  16 April 2024

C. Yun
Affiliation:
Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
D. Liu*
Affiliation:
Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
*
Corresponding author: D. Liu; Email: [email protected]

Abstract

The deceleration effect of the deployable aerodynamic decelerator is not as good as a parachute in the subsonic region. This paper proposes a novel concept of using a parachute-like configuration (PLC) to enhance the deceleration performance of the mechanically deployable aerodynamic decelerator (MDAD) through structural transformation. The MDAD turned into the PLC from the sphere cone configuration (SCC) at Ma 0.8. The aerodynamic characteristics of the two configurations are analysed deeply. Compared to the SCC, the results show that the drag coefficient increases effectively, and the maximum increases is about 10% in the PLC. The airflow is altered by the MDAD configuration, which can affect the surface pressure and temperature. During the transformation process, the axial and normal force coefficients tend to stabilise. However, the static stability of the PLC deteriorates sharply compared to the SCC when the angle-of-attack exceeds 45°.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goyal, V., Wongchote, J., and Strizzi, J.D. Advancements in mission assurance standards for expendable and reusable launch vehicles, J. Aerosp. Inform. Syst., 2022, 19, (11), pp 699704. doi: 10.2514/1.I011002 Google Scholar
Kim, Y., Lee, H.-J., and Roh, T.-S. Analysis of propellant weight under re-entry conditions for a reusable launch vehicle using retropropulsion, Energies, 2021, 14, (11), pp 32103234. doi: 10.3390/en14113210 CrossRefGoogle Scholar
Zang, T.A., Dwyer-Cianciolo, A.M., Kinney, D.J., Howar, A.R., Chen, G.T., and Ivanov, M.C. Overview of the NASA entry, descent and landing systems analysis study, in AIAA SPACE, 2010, 2010, Anaheim. doi: 10.2514/6.2011-7294 CrossRefGoogle Scholar
Zuppardi, G., and Mongelluzzo, G. Aerodynamic comparison of two concept capsules in earth reentry, J. Spacecraft Rockets, 2022, 59, (3), pp 826833. doi: 10.2514/1.A35185 CrossRefGoogle Scholar
Finchenko, V.S., Ivankov, A.A., Golomazov, M.M., and Shmatov, S.I. On the use of inflatable decelerators in the design of spacecraft intended for the study of Venus, Solar Syst. Res., 2020, 54, (7), pp 595602. doi: 10.1134/s0038094620070059 CrossRefGoogle Scholar
Cruz, J.R., and Green, J.S. Subsonic dynamic testing of a subscale ADEPT entry vehicle, in AIAA Atmospheric Flight Mechanics, 2019, San Diego, CA. doi: 10.2514/6.2019-2898 CrossRefGoogle Scholar
Bose, D.M., Winski, R., Shidner, J., Zumwalt, C., Johnston, C.O., Komar, D.R., Cheatwood, F.M., and Hughes, S.J. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) mission applications study, in AIAA Aerodynamic Decelerator Systems (ADS) Conference, 2013. doi: 10.2514/6.2013-1389 CrossRefGoogle Scholar
Venkatapathy, E., Hamm, K., Fernandez, I., Arnold, J., Kinney, D., Laub, B., Makino, A., McGuire, M., Peterson, K., Prabhu, D., Empey, D., Dupzyk, I., Huynh, L., Hajela, P., Gage, P., Howard, A., and Andrews, D. Adaptive Deployable Entry and Placement Technology (ADEPT): a feasibility study for human missions to Mars, in 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2011, Dublin. doi: 10.2514/6.2011-2608 CrossRefGoogle Scholar
Guo, J., Lin, G., Bu, X., Fu, S., and Chao, Y. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator, Acta Astronaut., 2017, 136, pp 421433. doi: 10.1016/j.actaastro.2017.03.019 CrossRefGoogle Scholar
Guo, J., Lin, G., Zhang, J., Bu, X., and Li, H. Hypersonic aerodynamics of a deformed Aeroshell in continuum and near-continuum regimes, Aerosp. Sci. Technol., 2019, 93, pp 105296105313. doi: 10.1016/j.ast.2019.07.029 CrossRefGoogle Scholar
Zhao, Y., Yan, C., Liu, H., and Qin, Y. Assessment of laminar-turbulent transition models for Hypersonic Inflatable Aerodynamic Decelerator aeroshell in convection heat transfer, Int. J. Heat Mass Tran., 2019, 132, pp 825836. doi: 10.1016/j.ijheatmasstransfer.2018.11.025 CrossRefGoogle Scholar
Dutta, S., Karlgaard, C.D., Korzun, A.M., Green, J.S., Tynis, J.A., Williams, J.D., Yount, B., Cassell, A.M., and Wercinski, P.F. Adaptable deployable entry and placement technology sounding rocket one modeling and reconstruction, J. Spacecraft Rockets, 2022, 59, (1), pp 236259. doi: 10.2514/1.A35090 CrossRefGoogle Scholar
Smith, B.P., Tanner, C.L., Mahzari, M., Clark, I.G., Braun, R.D., and Cheatwood, F.M. A historical review of inflatable aerodynamic decelerator technology development, in IEEE Aerospace Conference, 2010. doi: 10.1109/AERO.2010.5447013 CrossRefGoogle Scholar
Samareh, J., and Komar, D. Parametric mass modeling for mars entry, descent and landing system analysis study, in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, Orlando, FL. doi: 10.2514/6.2011-1038 CrossRefGoogle Scholar
Skolnik, N., Kamezawa, H., Li, L., Rossman, G., Sforzo, B., and Braun, R.D. Design of a novel hypersonic inflatable aerodynamic decelerator for mars entry, descent, and landing, in AIAA Atmospheric Flight Mechanics Conference, 2017, Grapevine. doi: 10.2514/6.2017-0469 CrossRefGoogle Scholar
Hou, X.Y., Zhang, H.Y., Zhang, P., Gui, S.W., and Hou, Y.Z. Research on second deployment of mechanical deployable aerodynamic deceleration technology in the transonic and subsonic stages, Spacecraft Recover Remote Sens., 2018, 39, (2), pp 17. doi: 10.3969/j.issn.1009-8518.2018.02.001 Google Scholar
Gramola, M., Bruce, P.J., and Santer, M.J. Hypersonic foldable Aeroshell for Thermal protection using Origami (HATHOR): aerothermal analysis, in AIAA Scitech 2022 Forum, 2022, San Diego. doi: 10.2514/6.2022-2288 CrossRefGoogle Scholar
Zhao, Z., Zhang, L.P., Lei, H., He, X.Y., Guo, Y.H., and Xu, Q.X. PHengLEI: a large scale parallel CFD framework for arbitrary grids, Chin. J. Comput., 2019, 41, (11), pp 23682383. doi: 10.11897/SP.J.1016.2019.02368 Google Scholar
Olds, A.D., Beck, R.E., Bose, D.M., White, J.P., Edquist, K.T., Hollis, B.R., Lindell, M.C., and Cheatwood, F.M. IRVE-3 post-flight reconstruction, in AIAA Aerodynamic Decelerator Systems (ADS) Conference, 2013, Daytona Beach. doi: 10.2514/6.2013-1390 CrossRefGoogle Scholar
Wang, R., Hou, A., and Niu, Y. The optimal design and analysis of the IRDT system based on two-dimensional ballistic trajectory in atmosphere reentry, in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015, Glasgow. doi: 10.2514/6.2015-3672 CrossRefGoogle Scholar