Published online by Cambridge University Press: 04 October 2019
The ever-growing need to improve manufacturing processes has led recently to an increase in the number of automation solutions used to assemble aircraft structural elements. A process of interest to this industry is the alignment of fuselage sections, which is currently done either manually or by complex, expensive automated systems. The manual method introduces a significant production delay and most automated systems have limited flexibility. This article presents an integration solution implemented in an alternative low-cost, high-flexibility alignment robotic cell. The performance of an optical coordinate measuring machine (CMM) as feedback source for the adaptive control of a conventional industrial manipulator is assessed. Laser interferometry readings are used as reference. The contribution of the work lies in the execution of experiments based on the EN ISO 9283 standard (Manipulating industrial robots - performance criteria and related test methods) to determine the adequacy of the commercial off-the-shelf system to the tolerances and requirements of the fuselage alignment process at hand. The optimal configuration of the integrated system attained the nominal alignment position with an average accuracy of 0.16mm and $0.004^\circ$ , partially meeting the required tolerances, and the obtained values are nearly 16x better compared to a baseline, open-loop manipulator. These results serve as reference for the aerospace industry in the development of the next generation of tools and automated assembly processes.