Published online by Cambridge University Press: 04 July 2016
The Technical Note by C. H. E. Warren in the September Journal raises a question on the transfer of lift, of an aeroplane in supersonic flight, to the ground. This problem was considered in reference 2. It was shown that, as expected, the resultant of the pressure field produced by the aeroplane is equal to its lift. This apparent inconsistency with the N-wave pattern, predicted by Whitham stems from the fact that most applications of Whitham's theory are based on asymptotic forms for the velocity perturbations. Thus, the formula for the axial velocity perturbation is obtained by allowing (M2— l)l/2r/y to tend to infinity, where M is the flight Mach number, r the radial distance away from the aeroplane, y=x—(M2 — l)1/2, and x is the distance along the aeroplane flight direction. This approximation is valid in the vicinity of the shock waves emanating from the aeroplane.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.