Published online by Cambridge University Press: 15 May 2018
The current research paper describes the lateral-directional parameter estimation from flight data of a miniature Unmanned Aerial Vehicle (UAV) using Maximum Likelihood (ML), and Neural-Gauss-Newton (NGN) methods. An unmanned configuration with a cropped delta planform and thin rectangular cross-section has been designed, fabricated and instrumented. Exhaustive full-scale wind-tunnel tests were performed on the UAV to extract the form of aerodynamic model that has to be postulated a priori for parameter estimation. Rigorous flight tests have been performed to acquire the flight data for several prescribed manoeuvres. Four sets of compatible flight data have been used to carry out parameter estimation using classical ML and neural-network-based NGN methods. It is observed that the estimated parameters are consistent and the lower values of the Cramer-Rao bound for the corresponding estimates have shown significant confidence in the obtained parameters. Furthermore, to validate the aerodynamic model used and to enhance the confidence in the estimated parameters, a proof of match exercise has been carried out.