Published online by Cambridge University Press: 27 January 2016
When an aero-engine is operating on the ground the formation of a potent inlet ground vortex can arise which has the ability to ingest foreign object debris. The ingestion of foreign objects can cause notable damage to engine components as well as overall performance degradation. The assessment of foreign object ingestion has been conducted using a combination of computational fluid dynamics, analytical modelling and an Euler-Lagrange uncoupled discrete phase particle tracking method. The flow fields for a full-scale aero-engine have been simulated for a range of ground clearances and intake velocity ratios under crosswind conditions. The sensitivity of the debris ingestion thresholds and characteristics to particle size and material density has been evaluated. The characteristics of the ingestion location within the intake are also considered for a range of operating conditions and particle parameters.