Article contents
Experimental investigation of infrared signal characteristics in a micro-turbojet engine
Published online by Cambridge University Press: 05 April 2019
Abstract
Infrared signal measurements from a micro-turbojet engine are conducted to understand the characteristics of the engine performance and the infrared signal by varying the exhaust nozzle configuration. A cone type nozzle and five rectangle type nozzles whose aspect ratios vary from one to five are used for this experimental work. As a result, it is confirmed that the thrust and the fuel consumption rate of the engine do not change greatly by varying the exhaust nozzle shape. In the case of the aspect ratio of 5, the specific fuel consumption of the engine is increased by about 3% compared to the reference cone nozzle, but the infrared signal can be reduced by up to 14%. As a result of measuring the temperature distribution of the plume gas, the correlation of infrared signal with plume gas temperature distribution can be understood. In the case of a cone shape, the distribution of plume gas formed to circular shape, and the high-temperature core region of plume gas continued to develop farther to the downstream. However, the temperature distribution was maintained in the rectangular shape as the aspect ratio increased, and the average temperature decreased sharply. As the aspect ratio increases, the plume spreads more widely.
- Type
- Research Article
- Information
- Copyright
- © Royal Aeronautical Society 2019
Footnotes
The original version of this article was published with an incorrect author name. A notice detailing this has been published and the error rectified in the online PDF and HMTL copies.
References
A correction has been issued for this article:
- 6
- Cited by
Linked content
Please note a has been issued for this article.