Published online by Cambridge University Press: 03 May 2019
The persistent coverage control problem is formulated based on cell discretisation of two-dimensional mission space and time-increasing cell ages. A new performance function is defined to represent the coverage level of the mission space, and time behaviour is evaluated by the probabilistic method based on the detection model of agents. For comparison, persistent coverage controllers are designed by a target-based approach and a reactive approach. Both controllers are designed in a distributed manner using Voronoi tessellation and Delaunay graph-based local information sharing. Numerical simulation is performed to analyse the evaluated mean age of cells and evaluated coverage level over time for the designed persistent coverage controllers. The differences between the evaluation model and simulation situation are discussed.
A version of this paper first appeared at the 2018 ICAS International Conference on Aeronautical Sciences, Bela Horizonte, Brazil.