Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:18:35.588Z Has data issue: false hasContentIssue false

Buffeting tests in a cryogenic windtunnel

Published online by Cambridge University Press:  04 July 2016

D. G. Mabey
Affiliation:
Department of Aeronautics, Imperial College, London
R. P. Boyden
Affiliation:
Nasa Langley, USA
W. G. Johnson
Affiliation:
Nasa Langley, USA

Summary

Measurements of wing buffeting, using root strain gauges, were made in the Nasa Langley 0-3 m cryogenic windtunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and the European Transonic Windtunnel (ETW). The questions addressed included the relative importance variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion.

The main series of tests was made on three half models of slender 65° delta wings with a sharp leading edge. The three delta wings had the same planform but widely differing bending stiffnesses and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the steady flow on this configuration would be insensitive to variations in Reynolds number. On this wing at vortex breakdown the spectrum of the unsteady excitation is unusual, having a sharp peak at particular frequency parameter.

Additional tests were made on one unswept half-wing of aspect ratio 1·5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. The test Mach numbers were M = 0·21 and 0·35 for the delta wings and to M = 0·30 for the unswept wing. On this wing the unsteady excitation spectrum is fairly flat (as on most wings). Hence correct representation of the frequency parameter is not particularly important.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mabey, D.G. Some aspects of aircraft dynamic loads due to flow separation. Prog Aerospace Sci, 1989, 26, pp 115151 or AGARD R750, 1988.Google Scholar
2. Huston, W.B.A. study of the correlation between flight and wind tunnel buffet loads. AGARD Report 12, 1957.Google Scholar
3. Jones, J.G. A survey of the dynamic analysis of buffeting and related phenomena. RAE Technical Report 72197, 1972.Google Scholar
4. Boyden, R.P. and Johnson, W.G. Jr. Results of buffeting tests in a cryogenic windtunnel. NASA TM 84520, 1982.Google Scholar
5. Mabey, D.G. and Butler, G.F. Measurements of buffeting on two 65° delta wings of different materials. RAE Technical Report 76009, 1976, also Paper 6, AGARD CP 226, 1977.Google Scholar
6. Mabey, D.G. and Welsh, B.L. Measurements and calculations of steady and oscillatory pressures on a low aspect ratio model at subsonic and transonic speeds. J Fluids Structures, 1987,1, pp 445468.Google Scholar
7. Mabey, D.G., Welsh, B.L. and Pyne, C.R. A summary of measurements of steady and oscillatory pressures on a rectangular wing. Aeronaut J, 1988, 92, (911), pp 1028.Google Scholar
8. Mabey, D.G. Some remarks on dynamic aeroelastic model tests in cryogenic windtunnels, NASA CR-145029, 1975.Google Scholar
9. Cole, H.A. Jr., On-the-line analysis of random vibrations, AIAA Paper No 68-288, 1968.Google Scholar
10. Mabey, D.G., Boyden, R.P. and Johnson, W.G Further buffeting tests in a cryogenic windtunnel, RAE Aero 2231, 1991 also NASA TM 107621,1992.Google Scholar
11. Bippes, H., Jakob, K. and Turk, M., Experimental investigations of the separated flow around a rectangular wing in a windtunnel, DFVLR-FB-81-12, 1981.Google Scholar
12. Hall, D.J., Quincey, V.G., and Lock, R.C. Some results of wind-, tunnel tests on an aerofoil section (NPL 9510) combining a “peaky“ upper surface pressure distribution with rear loading, ARC CP 1292, 1974.Google Scholar
13. Roos, F.W. Some features of the unsteady pressure field in transonic aerofoil buffeting. AIAA J Aircr, 1980,17, Part 11, pp 781788.Google Scholar
14. Mabey, D.G. A review of scale effects in unsteady aerodynamics, RAE Technical Report 91007, 1991, Prog Aerospace Sci, 1991, 28, pp 273–32.Google Scholar
15. Mabey, D.G., Ashill, P.R. and Welsh, B.L. Aeroelastic oscillations caused by transitional boundary layers and their attenuation, AIAA J Aircr, 1987, 24, Part 7 pp 463469.Google Scholar
16. Zan, S.J. and Maull, D.J. The effect of wing planform on lowspeed buffet, AGARD CP 483, 1990, Paper 12.Google Scholar
17. Byrdson, T.A., Adams, R.R. and Sandford, M.C. Close-range photogrammetric measurement of static deflections for an aero-elastic supercritical wing, NASA TM 4194, 1990.Google Scholar
18. Mabey, D.G. Some remarks on the design of transonic tunnels with low levels of flow unsteadiness, NASA CR 2722, 1976.Google Scholar
19. Mabey, D.G., Welsh, B.L. and Pyne, C.R. The reduction of rigidbody response of sting supported models at high angles of incidence. RAE TR 89012, 1989. Also A review of rigid-body response of sting supported models at high angles of incidence, Prog Aerospace Sci, 1991, 28, pp 133170.Google Scholar