Published online by Cambridge University Press: 04 July 2016
In using the method of stage stacking to compute the off-design performance of multi-stage axial compressors, it has been observed that the limitation on performance at speeds above the design speed has been set by the stall and the choke points of the rear stages(1). Thus if the rear stages can absorb a wide range of mass flows between stalled conditions and choked conditions, a better performance could be obtained.
Compressor stages using low stagger blades will absorb a large range of mass flow between stalled and choked condition; but because of the high axial velocity involved in their use, they tend to be unsuitable for low pressure stages because of the high Mach number obtained. In the higher pressure stages the increased gas temperature will lower the Mach number for the same velocity and give more efficient operation.