Published online by Cambridge University Press: 06 March 2019
An application of energy dispersive diffractometry to the measurement of residual strains (stresses) in the interior of industrial materials is described with particular emphasis on the use of high energy (up to 250 keV) x-ray photons. The use of high energy photons permits better penetration into materials. Hence diffraction data for evaluating bulk residual strains can be obtained in the transmission geometry in contrast with the conventional angular dispersive diffractometry, which uses Bragg reflections from the surface of materials. The reliability and sensitivity (detectability of small strains) of the energy dispersive method are demonstrated through its application to mapping of residual stress distributions across weld zones in Alaskan pipe line segments (API5LX65). The detectability of strain variations within materials depends on x-ray optical resolution and statistics.