Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T09:36:00.122Z Has data issue: false hasContentIssue false

Total Electron Yield (TEY) A New Approach for Quantitative X-ray Analysis

Published online by Cambridge University Press:  06 March 2019

Horst Ebel
Affiliation:
Technische Universitat Wien Institut für Angewandte und Technische Physik A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Robert Svagera
Affiliation:
Technische Universitat Wien Institut für Angewandte und Technische Physik A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Maria F. Ebel
Affiliation:
Technische Universitat Wien Institut für Angewandte und Technische Physik A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Norbert Zagler
Affiliation:
Technische Universitat Wien Institut für Angewandte und Technische Physik A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Get access

Extract

An irradiation of solid samples with x-rays causes an electron emission from the sample surface, owing to photoabsorption. These electrons can be detected under vacuum conditions and are photo, Auger and secondary electrons. Due to inelastic collisions most of these electrons have lost some of their original kinetic energy along the path from the atom of origin to the surface. With nondispersive electron detection the total electron yield (TEY) is observed.

For measurements performed with a tunable x-ray monochromator information on the qualitative composition can be obtained by the following procedure. The photon energy has to be timed from below to above of one of the absorption edges of a given element. In case of its presence in the specimen an increase of the TEY-signal can be observed.

Type
IV. New Developments in X-Ray Sources, Instrumentation and Techniques
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sherman, J., Spectrochim.Acta 7: 283 (1955).Google Scholar
2. Shiraiwa, T., and Fujino, N., Jpn. J. Appl.Phys. 5: 886 (1966).Google Scholar
3. Criss, J. W., and Birks, L. S., Anal. Chem. 40: 1080 (1968).Google Scholar
4. Chen, M. H., Crasemann, B., and Mark, H., Phys. Rev. A 24: 177 (1981).Google Scholar
5. Hubbell, J. H., Trehan, P. N., Singh, N., Chand, B., Metha, D., Garg, M. L., Garg, R. R., Singh, S., and Puri, S. J. Phys. Chem. Ref. Data 23: 339 (1994).Google Scholar
6. CRC Handbook of Chemistry and Physics, CRC Press, Inc. Boca Raton, Florida. Eds. R. C Weast, and Astle, M. J.. E189 (1981).Google Scholar
7. Puri, S., D. Mehta, B. Chand, N. Singh, Hubbell, J. H., and Trehan, P. N., Nucl.Instr. & Meth. in Phys.Res. B 83: 21 (1993).Google Scholar
8. Scofield, J. H., Theor. Photo ionization Cross Sections from 1 to 1500 keV, Lawrence Livermore Lab., Univ. of California/Livermore. UCRL 51326 (1973).Google Scholar
9. Martens, G., Rabe, P., Tolkiehn, G., and Werner, A., phys. stat. sol. (a)55: 105 (1979)Google Scholar
10. GJones, R., and Woodruff, D. P., Surf.Sci. 114: 39 (1982)Google Scholar
11. Chumakov, A. I., Smirnov, G. V., Kruglov, M. V., and Solomin, I. K., phys, stat. sol. (a)98: 11(1986).Google Scholar
12. Erbil, A., Cargill, G. S. III, R. Frahm, and Boehme, R. F., Phys. Rev. B 37: 2450 (1988).Google Scholar
13. Abbate, M., Goedkoop, J. B., ce Groot, F. M. F., Grloni, M., Fuggle, J. C., Hofmann, S., Petersen, H., and Sacchi, M., Surf. Interface Anal. 18: 65 (1992).Google Scholar
14. Vogel, J., and Sacchi, M., I. Electron Spectr. Relat. Phen. 67: 181 (1994).Google Scholar