No CrossRef data available.
Published online by Cambridge University Press: 06 March 2019
The measurement of retained austenite is important in the analysis and quality control of asmanufactured steel components, as well as to the evaluation of components returned from service. The amounts of retained austenite are most accurately measured using x-ray diffraction techniques where the integrated area under the austenite and martensite diffraction peaks from a sample are determined. In addition to quantitative information about the amount of each phase, however, the raw x-ray diffraction data contains other information that may be useful in evaluating the condition of a steel component. The diffracting particle size of both the martensite and austenite phases, and the presence and degree of preferred orientation in both phases can be calculated from the basic four peak retained austenite x-ray scan. This information, in conjunction with knowledge of the amount of retained austenite present, may be used to determine information about variations in materials and manufacturing processes as well as changes due to service. If the residual stress in both phases is also measured, additional conclusions can be made regarding changes due to processing and service. The theoretical and experimental aspects of these measurements are reviewed data from a case history in which these types of measurements were used to determine changes due to processing and service are presented.