Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T11:00:10.494Z Has data issue: false hasContentIssue false

Size-Strain and Quantitative Phase Analysis by the Rietveld Method

Published online by Cambridge University Press:  06 March 2019

Paolo Scardi
Affiliation:
Department of Materials Engineering, University of Trento 38050 Mesiano (Trentoi), Italy
Luca Lutterotti
Affiliation:
Department of Materials Engineering, University of Trento 38050 Mesiano (Trentoi), Italy
Rosa Di Maggio
Affiliation:
Department of Materials Engineering, University of Trento 38050 Mesiano (Trentoi), Italy
Get access

Abstract

A modified version of the Rietveld method has been developed for quantitative phase analysis in conjunction with crystallite size and microstrain determination.

Besides the information on the microstructural disorder in the different phases present in the sample, accurate phase analysis can be performed, even in presence of anisotropic crystallites, taking into account the non-instrumental peak broadening effect in a better way compared to conventional methods.

The method has been tested on binary mixtures of corundum, ceria stabilized zirconia and on a polyphase stabilized zirconia sample.

Type
I. Whole Pattern Fitting, Rietveld Analysis and Calculated Diffraction Patterns
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klug, H.P. & Alexander, L.E., 1974, “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,” 2nd ed. , pp. 531538, J. Wiley & Sons, New York (1974).Google Scholar
2. Wang, H., Powder Diffraction 3: 165 (1988)Google Scholar
3. Smith, D.K., Johnson, G.G. Jr, Scheible, A., Wims, A.M., Johnson, J.L. Ullmann, G., Powder Diffraction 2: 73 (1987)Google Scholar
4. Zevin, L.S. & Zevin, S.L., powder Diffraction 4: 196 (1989).Google Scholar
5. Rietveld, H.M., Acta Cryst. 22: 151 (1967).Google Scholar
6. Rietveld, H.M., Acta Cryst. 2: 65 (1969).Google Scholar
7. Young, R.A. & Wiles, D.B., J. Appl. Cryst. 15: 430 (1982) .Google Scholar
8. Howard, C.J. & Hill, R.J., J. Mat. Sci. 26: 127 (1991)Google Scholar
9. Will, G., Bellotto, M., Parrish, W. & Hart, M., J. Appl. Cryst, 31; 182 (1988).Google Scholar
10. Taylor, J.C. & Matulis, C.E., J. Appl. Cryst., 24: 14 (1991).Google Scholar
11. Masciocchi, N., Toraya, H. & Parrish, W., in: “Proceeding of the First European Powder Diffraction Conference - EPDIC1,Munich (FRG),March 14-16th, 1991”. To be published on Mat. Sci. Forum.Google Scholar
12. Lutterotti, L. & Scardi, P., J. Appl. Cryst. 23: 246 (1990).Google Scholar
13. Scardi, P., Lutterotti, L. Di Maggio, R. & P, Maistrelli, in:“Proceeding of the First European Powder Diffraction Conference-EPDICl, Munich (FRG), March 14-16th, 1991”. To be published on Mat .Scj , Forum.Google Scholar
14. Caglioti, G., Paoletti, A. & Ricci, F.P., Nucl. Instrum. Methods 3: 223 (1953).Google Scholar
15. Kielkopf, J.F., J. Opt. Soc. Am., 63: 987 (1973).Google Scholar
16. Nandi, R.K., Kuo, H.K., Schlosberg, W., Wissler, G., Cohen, J.B. & B.Jr Crist, J Appl. Cryst. 17: 22 (1984).Google Scholar
17. Guinier, A., “X-Ray Diffraction”, p. 139, W.H. Freeman, San Francisco (1963).Google Scholar
18. Lewis, J., Schwarzenbach, D. & H. D. Flack, Acta Cryst. A38: 733 (1982).Google Scholar
19. Tani, E., Yoshimura, M. & Soraoya, S., J. Am. cer. Sgc. 66:506 (1983).Google Scholar
20. Scardi, P., Lutterotti, L. & Di Maggio, R., Powder Diffraction 6: 20 (1991).Google Scholar