Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T15:39:52.388Z Has data issue: false hasContentIssue false

Selfconsistent Evaluation of Non-Uniform Stress Profiles and X-Ray Elastic Constants from X-ray Diffraction Experiments

Published online by Cambridge University Press:  06 March 2019

H. Wern
Affiliation:
Hochschule fur Technik und Wirtschaft des Saarlandes GoebenstraBe 40 D-66117 Saarbrucken, Germany
L. Suominen
Affiliation:
American Stress Technologies, Inc., Pittsburgh, PA
Get access

Abstract

A method to obtain the triaxial depth profiles of strains and stresses as a function of the depth below the surface is described. Instead of using inverse Laplace transforms to extract the z-profiles from the measured τ-profiles, a numerically stable inverse formalism with trigonometric basis functions is used. The formalism has already been applied with great success to the hole-drilling method for the determination of residual stresses. It requires no prior knowledge of the stress state and is suitable even for strongly non-linear stress fields. This is demonstrated by experimental data sets for the conventional Ω-, ѱ- and modified ѱ goniometers. Furthermore this method enables in situ determination of Poisson's ratio as well as the stress free lattice spacing using a selfconsistency criterion for isotropic materials. It is now possible to find a proper normalization of the residual strains and residual stresses. Because of the formulation as an inverse problem, analytical expressions for the beam path integrals could be derived even for curved surfaces. Inverse problems are often extremely ill-conditioned. Therefore the uniqueness of the solution is discussed in terms of a spectral shift of the corresponding eigenvalues.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wern, H. Journal of Strain 31(2), 63-68 (1995).Google Scholar
2. Wern, H. and Suominen, L., Advances in X-Ray Analysi., 37, 279289 (1994).Google Scholar
3. Zhu, X., Ballard, B. and Predecki, P., Advances in X-Ray Analysis, 38 (1995).Google Scholar
4. Dölle, H. and Hauk, V., Härterei-Techn. Mitt.., 31, 165 (1976).Google Scholar
5. Wolfstieg, U., Härterei-Techn. Mitt., 31, 83 (1976).Google Scholar
6. Wern, H., Journal of Strai., 27, 127136 (1991).Google Scholar
7. Predecki, P., Powder Diffractio., 8, 122126 (1993).Google Scholar
8. Zhu, X and Predecki, P., Adv. in X-Ray Ana., 37, 197203 (1994).Google Scholar
9. Ruppersberg, H. Adv. in X-Ray Anal., 37, 245251 (1994).Google Scholar
10. Zhu, X., Predecki, P. and Ballard, B., Advances in X-Ray Analysis, 38 (1995).Google Scholar
11. Lode, W. and Peiter, A., Härterei-Techn, Mitt., 32, 308313 (1977).Google Scholar
12. Forsythe, G. E. and Moler, C. B., Computer-Verfahren für lineare algebraische Systeme, R. Oldenburg Verlag München Wien, (1971).Google Scholar
13. Scheid, F., Numerische Analysis, Mc Graw-Hill, (1979).Google Scholar
14. Noyan, I. C., Huang, T. C. and York, B. R., Critical Reviews in Solid State and Materials Sciences, 20(2), 125-177 (1995).Google Scholar
15. Ralston, A. and Wilf, H. S., Mathematische Methoden für Digitalrechner 1, 2. Auflage, R. Oldenburg Verlag München Wien, (1972).Google Scholar
16. Dölle, H. and Hauk, V., Z. f, Metallkde., 68, 728 (1977).Google Scholar
17. Noyan, I. C. and Cohen, J. B., “Residual Stress Measurement by Diffraction and Interpretation”, Springer (1987).Google Scholar
18. Eigenmann, B., Scholtes, B. and Macherauch, E., Mat. -wiss. und Werkstofftecha., 21, 257 (1990).Google Scholar
19. Schwarz, H. R., “Methode der finiten Elemente”, Teubner, B. G., (1984).Google Scholar
20. Press, W. H., et al, “Numerical Recipes in C, The Art of Scientific Computing”, 2nd Ed., Cambridge University Press (1992).Google Scholar