Published online by Cambridge University Press: 06 March 2019
As a means for quantitative texture analysis, the crystallite orientation distribution function analysis has an important drawback: to bring ghosts as a consequence of the presence of a non-trivial kernel which consists of the spherical harmonics of odd order terms. In the spherical hamonic analysis, ghosts occur in the particular orientations by symmetry operation from the real orientation in accordance with the symmetry of the harmonics of even orders. For recovery of the odd order harmonics, the 9th-order generalized spherical harmonics are linearly combined and added to the orientation distribution function reconstructed from pole figures to a composite function. The coefficients of the linear combination are optimized to minimize the sum of negative values in the composite function. Reproducibility was simulated by using artificial pole figures of single or multiple component textures. Elimination of the ghosts is accompanied by increase in the height of real peak in the composite function of a single preferred orientation. Relative fractions of both major and minor textural components are reproduced with satisfactory fidelity In the simulation for analysis of multi-component textures.