Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:55:21.099Z Has data issue: false hasContentIssue false

Measurement of Atomic Elastic Constants by Pulsed Neutron Powder Diffraction

Published online by Cambridge University Press:  06 March 2019

A. C. Lawson
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
G. H. Kwei
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
J. A. Goldstone
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
B. Cort
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
R. I. Sheldon
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
E. Foltyn
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
J. Vaninetti
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
D. T. Eash
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
R. J. Martinez
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
J. I. Archuleta
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545
Get access

Abstract

We have developed a technique for determining the atomic elastic constants from measurements of the Debye-Waller factors. The Debye-Waller factors are obtained by Rietveld refinement of time-of-flight neutron diffraction data and interpreted in terms of an atomic Debye-Waller temperature. The method is applicable to powders and to materials that must be encapsulated for safety or environmental reasons. We will illustrate our technique with applications to actinide metals, to metallic hydrides and to high-temperature superconductors.

Type
IX. Stress and Strain Determination by Diffraction Methods, Peak Broadening Analysis
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Willis, B. T. M. and Pryor, A. W., “Thermal Vibrations in Crystallography,” Cambridge University Press, London (1975).Google Scholar
2 Grimvall, G., “Thermophysical Properties of Materials,” North-Hoiland, Amsterdam (1986).Google Scholar
3 Von Dreele, R. B., Neutron Powder Diffraction, in “Modern Powder Diffraction,” D. L. Bish and J. E. Post, eds., Mineralogical Society of America, Washington (1989).Google Scholar
4 Larson, A. C. and Von Dreele, R. B. “General Structure Analysis System,” LAUR 86-748, Los Alamos National Laboratory (1986).Google Scholar
5 Lawson, A. C., Williams, A., Goldstone, J. A., Eash, D. T., Martinez, R. J., Archuleta, J. I., Martinez, D, J., Cort, B. and Stevens, M. F., Elastic Properties of Materials by Pulsed Neutron Diffraction, J. less-Common Metals 167: 353 (1991).Google Scholar
6 Lawson, A. C., Goldstone, J. A., Cort, B. and Diebolt, L., Debye-Waller Factors of Plutonium Metal, in: “LANSCE Experiment Reports, 1991 Run Cycle,” Los Alamos National Laboratory (to be published).Google Scholar
7 Goldstone, J. A., Lawson, A. C., Cort, B. and Foltyn, E., Low Temperature Study of Elemental Neptunium, in: “LANSCE Experiment Reports, 1991 Run Cycle,” Los Alamos National Laboratory (to be published).Google Scholar
8 Goldstone, J. A. and Lawson, A. C., Neutron Diffraction Study of Scandium Deuteride at Low Temperature, in: “LANSCE Experiment Reports, 1989 Run Cycle,” LA-11933-PR, Los Alamos National Laboratory (1990).Google Scholar
9 Fisk, Z. and Johnson, D. C., Isotope Effect in the Resistivity of Scandium Hydride, Phys. Lett. 53A:39(1975).Google Scholar
10 Kwei, G. H., Lawson, A. C. and Mostoller, M., Vibrational Properties and Atomic Debye Temperatures for La2CuO4 from Neutron Powder Diffraction, Physica C175: 135 (1991).Google Scholar