No CrossRef data available.
Article contents
Light Element Analysis
Published online by Cambridge University Press: 06 March 2019
Abstract
Qualitative and quantitative analyses of elements below atomic number 20, and extending to atomic number 4, have been made practical and reasonably routine only in the past five to ten years by advances in: 1) excitation sources; 2) dispersive spectrometers; 3) detection devices; and 4) reductions of optic path absorption. At present agreement is lacking on the best combination of parameters for light element analysis. The principal contrasts in opinion concern excitation.
Direct electron excitation, particularly as employed in microprobe analysis (but not limited to such instruments), provides relatively high emission intensities of all soft X-rays, but also generates a high continuum, requires the sample to be at essentially electron gun vacuum, and introduces practical calibration problems (“matrix effects“). X-ray excitation of soft X-rays overcomes some of the latter three disadvantages, and has its own limitations. Sealed X-ray sources of conventional or semi-conventional design can provide useful (if not optimum) light element emission intensities down to atomic number 9, hut with serious loss of efficiency in many applications below atomic number 15 largely because of window-thinness limitations under electron bombardment.
- Type
- Research Article
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 1969