Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T00:18:27.619Z Has data issue: false hasContentIssue false

High Resolution X-ray Diffraction for the Characterization of Semiconducting Materials

Published online by Cambridge University Press:  06 March 2019

B. K. Tanner*
Affiliation:
Department of Physics, University of Durham South Road, Durham, DH1 3LE, U.K.
Get access

Abstract

Use of a reference crystal to condition the beam in the double-axis diffractometer permits the Bragg peak width to be reduced to the correlation of the two crystal reflecting ranges. Some recent applications of double axis diffractometry to the study of heteroepitaxial layers are discussed. The advantages of multiple reflections for beam conditioning and the four reflection DuMond monochromator are examined. Glancing incidence and exit diffractometry permits the study of very thin layers, down to a few tens of nanometres in thickness and both synchrotron radiation and skew reflections can be used to tune the glancing angle close to the critical angle. Recent applications of triple-axis diffraction, where an analyzer crystal is used after the specimen, to the study of very thin single epitaxial layers and multiquantum well structures are reviewed.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tanner, B. K., Electrochem. Soc. Symp. Proc. 88-20: 133 (1988).Google Scholar
2. Tanner, B. K., J. Electrochem. Soc. (in press).Google Scholar
3. Tanner, B. K., J Crystal Growth (in press).Google Scholar
4. Fewster, P. F., J. Appl. Cryst. 18: 334 (1985).Google Scholar
5. Tanner, B. K., Chu, X. and Bowen, D. K., Mater. Res. Soc. Symp, Proc. 69: 191 (1986).Google Scholar
6. Brown, G. T., Keir, A. M., Gibbs, M. J., Gless, J., Irvine, S. J. C. and Astles, M. G., in: “Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and its Consequences”. Electrochem. Soc. Symp. Proc. 89-5: 171 (1989).Google Scholar
7. Tanner, B. K. and Halliwell, M. A. G., Semicond. Sci Tech. 3: 967 (1988).Google Scholar
8. Macrander, A. T., Lau, S., Strege, K. and Chu, S. N. G., Appl. Phys. Lett. 52: 1985 (1988).Google Scholar
9. Tanner, B. K., Green, G. S., Cockerton, S. and Miles, S. J., J. Crystal Growth (in press).Google Scholar
10. Lee, J. W., Bowen, D. K. and Salerno, J. P., Mater. Res. Soc. Symp. Proc. 91: 193 (1987).Google Scholar
11. Barnett, S. J., Brown, G. T., Houghton, D. C. and Baribeau, J-M.. Appl. Phys. Lett. 54: 1781 (1989).Google Scholar
12. DuMond, J., Phys. Rev. 52: 872 (1937).Google Scholar
13. Beaumont, J. H. and Hart, M., J. Phys. E : Sci. Inst. 7: 823 (1974).Google Scholar
14. Bowen, D. K. and Davies, S. T., Nucl. Inst. Meth. 208: 725 (1983).Google Scholar
15. Bartels, W. J., J. Vac. Sci. Technol. B1: 338 (1983).Google Scholar
16. Bartels, W. J., US Patent No. 4567605 (1986).Google Scholar
17. Bonse, U. and Ha, M. In. Appl. Phys. Lett. 7: 238 (1965).Google Scholar
18. Hart, L., Bowen, D. K. and Fisher, G. R.. Adv. X-ray Anal. 33: (1990) this volume.Google Scholar
19 Fewster, P. F. and Curling, C. J., J. Appl. Phys. 62: 4154 (1987).Google Scholar
20. Tanner, B. K., Miles, S. J., Peterson, G. G. and Sacks, R. N., Materials Letts. 7: 239 (1988).Google Scholar
21. Auvray, P., Baudet, M. and Regreny, A., J. Crystal Growth 95: 288 (1989).Google Scholar
22. Halliwell, M. A. G., Lyons, M. H., Davy, S. T., Hockly, M., Tuppen, C. G. and Gibbings, C. J., Semicond. Sci. Technol. 4: 10 (1989).Google Scholar
23. Pietsch, U. and Marlow, D., Phys. Stat. Sol, (a) 93: 143 (1986).Google Scholar
24. Brozei, M., Singer, K. and Truscott, W. S. (private communication)Google Scholar
25. Tanner, B. K. and Hill, M. J., J. Phys. D: Appl. Phys. 19: L229 (1986).Google Scholar
26. Brubl, H. G., Pietsch, U. and Lengeler, B., J. Appl. Cryst. 21: 240 (1988).Google Scholar
27. Lyons, M. H. and Halliwell, M. A. G., Inst. Phys. Conf. Ser. 76: 10 (1985).Google Scholar
28. Miles, S. J., PhD Thesis. Durham University, (1989).Google Scholar
29. Pietsch, U. and Borchard, W., J. Appl. Cryt. 20: 8 (1987).Google Scholar
30. Ryan, T. W., Hatton, P. D., Bates, S., Watt, M., Sotomayor-Torres, C., Claxton, P. A. and Roberts, J. S., Semicond. Sci. Technol. 2: 241 (1987).Google Scholar
31. Lucas, C. A., Hatton, P. D., Bates, S., Ryan, T. W., Miles, S. and Tanner, B. K., Appl Phys. 63: 1936 (1988).Google Scholar
32. Fewster, P. F., Electrochem. Soc. Symo. Proc. S9-5: 278 (1989).Google Scholar
33. Fewster, P. F., J. Appl. Cryst. 22: 64 (1989).Google Scholar
34. Bates, S., Hatton, P. D., Lucas, C. A., Ryan, T. W., Miles, S. J. and Tanner, B. K., Adv. X-ray Anal 31: 155 (1988).Google Scholar
35. Zaumseil, P., Winter, U., Cembali, F., Servidori, M. and Sourek, Z., Phys. Stat. Sol. (a) 100: 95 (1987).Google Scholar