Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:30:26.785Z Has data issue: false hasContentIssue false

An Analysis of Macro- and Microstresses Around a Fatigue Crack Tip

Published online by Cambridge University Press:  06 March 2019

J. D. Almer
Affiliation:
Northwestern University, Evanston, Il
J. B. Cohen
Affiliation:
Northwestern University, Evanston, Il
W. D. Kirk
Affiliation:
Northwestern University, Evanston, Il
R. A. Winholtz
Affiliation:
Northwestern University, Evanston, Il
Get access

Abstract

We have investigated the stresses existing before and during fatigue crack growth in a 1080 spheroidized steel. The total stress state, which consists of triaxial macro- and microstress components, has been measured around the fatigue crack tip using x-ray microbeam diffraction. A tapered glass capillary of 210μm diameter has been developed to provide increased intensity, smooth diffraction peaks and good spatial resolution. Findings indicate that stresses generated by the growing crack are mainly macro stresses, and dominate over pre-existing residual stresses around the tip.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Paris, P., “Proc. 10th Sagamore Army Materials Research Conf”, p. 107, Syracuse Univ. Press, NY (1964).Google Scholar
2. Elber, W., ASTM STP 486, p. 230 (1971).Google Scholar
3. Ohta, A., Kosuge, M., Matsuoka, S., Takeuchi, E., Muraniatsu, Y. and Nichijima, S., Int. J. Fract., 38, p. 207(1988).Google Scholar
4. Torii, T., Honda, K. and Sugiyama, M., JSME Int. J., 32, p. 450 (1989).Google Scholar
5. Allison, J. E., ASTM STP 677, p. 550 (1979).Google Scholar
6. Taira, S. and Tanaka, K., Trans. Iron and Steel Inst. Japan, 19, p. 411 (1979).Google Scholar
7. Blumenauer, H. and Zutkhoff, B., Problemy Prochnosti 3, p. 18 (1981).Google Scholar
8. Schlosberg, W. and Cohen, J., Met. Trans., 13A, p. 1987 (1982).Google Scholar
9. Honda, K., Hosokawa, N., Sarai, T. and Okamoto, K., J. Soc. Mat. Sci. Japan, 31, p. 8 (1982).Google Scholar
10. Welsch, E., Eifler, K., Scholtes, B. and Macherauch, E., ECF no. 6, p. 1303 (1986).Google Scholar
11. Dolle, H. and Hauk, V., A. f. Metalkde, 68, p. 728 (1977).Google Scholar
12. Noyan, I., Met. Trans. A., 14A, p. 1907 (1983).Google Scholar
13. Winholtz, R. and Cohen, J., Aust. J. Physics, 41, p. 189 (1988).Google Scholar
14. Noyan, I. and Cohen, J., “Residual Stress: Measurement by Diffraction and Interpretation”, New York, Springer Verlag (1987).Google Scholar
15. Winholtz, R., and Cohen, J., Adv. X-ray Anal., 32, p. 341 (1989).Google Scholar
16. Lester, H. and Aborn, R., Army Ordinance 6, p. 120, 200 283, 364 (1925-26).Google Scholar
17. Parratt, L., Phys. Rev., 95, p. 359 (1954).Google Scholar
18. Xiao, Q., Ponamarev, I., Kolomitsev, A. and Kimball, J., X-Ray Optical Systems Inc., (1991).Google Scholar
19. Winholtz, R., PhD. Thesis, Northwestern University (1991).Google Scholar
20. Hartmann, S. and Ruppersberg, H., Mat. Sci. Eng. A, 190, p. 231 (1995).Google Scholar
21. Eshelby, J., Proc. R. Soc. London, 241, p. 376 (1957).Google Scholar