Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T09:54:47.705Z Has data issue: false hasContentIssue false

Accurate Modeling of Size and Strain Broadening in the Rietveld Refinement: The “Double-Voigt” Approach

Published online by Cambridge University Press:  06 March 2019

Davor Baizar
Affiliation:
Department of Materials Research and Electronics, Ruder Boškovič Institute PO. Box 1016, 41001 Zagreb, Croatia
Hassel Ledbetter
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 325 Broadway, BoulderColorado 80303, U.S.A.
Get access

Abstract

In the “double-Voigt” approach, an exact Voigt function describes both size- and strainbroadened profiles. The lattice strain is defined in terms of physically credible mean-square strain averageid over a distance in the diffracting domains. Analysis of Fourier coefficients in a harmonic approximation for strain coefficients leads to the Warren-Averbach method for the separation of size and strain contributions to diffraction line broadening. The model is introduced in the Rietveld refinement program in the foliowing way: Line widths are modeled with only four parameters in the isotropic case. Varied parameters are both surface- and volumeweighted domain sizes and root-mean-square strains averaged over two distances. Refined parameters determine the physically broadened Voigt line profile. Instrumental Voigt line profile parameters are added to obtain the observed (Voigt) line profile. To speed computation, the corresponding pseudo-Voigt function is calculated and used as a fitting function in refinement. This approach allows for both fast computer code and accurate modeling in terms of physically identifiable parameters.

Type
V. Residual Stress, Crystallite Size and rms Strain Determination by Diffraction Methods
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Warren, B. E. and Averbach, B. L., J. Appl Phys. 23:497 (1952).Google Scholar
2. Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures, 2nd edition (John Wiley, New York, 1974), p. 661.Google Scholar
3. Baizar, D., J. Appl Cryst. 25:559 (1992).Google Scholar
4. Baizar, D., in preparation.Google Scholar
5. Haider, N. C. and Wagner, C. N. J., A eta Cryst. 20:312 (1966).Google Scholar
6. de Keijser, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, B. P., J. Appi. Cryst. 15:308 (1982).Google Scholar
7. de Keijser, Th. H., Mittemeijer, E. J., and Rozendaal, H. C. F., J. Appl Cryst. 16:309 (1933).Google Scholar
8. Thompson, P., Cox, D. E., and Hastings, J. B., J. Appi. Cryst. 20:79 (1987).Google Scholar
9. Warren, B. E., in Progress in Metal Physics (Pcrgamon Press, London, 1959). Vol. 8, p.146.Google Scholar
10. Pievert, J. and Louer, D., J. Chim. Phys. 87:1427 (1990).Google Scholar
11. Langford, J. I., in Accuracy in Powder Diffraction II , NIST Special Publication No. 846, edited by Prince, E. and Stalick, J. K. (National Institute of Standards and Technology, Washington, D.C., 1992), p. 110.Google Scholar
12. Young, R. A. and Desm, P., Arch. Nauk Mater. 10:71 (1989).Google Scholar
13. Langtbrd, J. I., in Accuracy in Powder Diffraction , NBS Special Publication No. 567, edited by Block, S. and Hubbard, C. R. (National Bureau of Standards, Washington, D.C., 1980) p. 255.Google Scholar
14. Stokes, A. R. and Wilson, A. J. C., Proc. Phys. Soc. Lond. 56:174 (1944).Google Scholar
15. Langfcrd, J. I., Delhez, R., de Keijser, Th. H., and Mitteraeijer, E. J., Aust. I Phvs. 41:173 (1988).Google Scholar
16. Warren, B. E., X-Ray Diffraction (Addison-Wesley, Reading, Massachusetts, 1969), p. 264.Google Scholar
17. Baizar, D. and Ledbetter, H., J. Appl Cryst 26:97 (1993).Google Scholar
18. Rothmaii, R. L. and Cohen, J. B., J. Appl. Phys. 42:971 (1971).Google Scholar
19. Kamiyama, T., Shinohara, T., Tomiyoshi, S., Minonishi, Y., Yamamoto, H., Asano, H., and Watanabe, N., J. Appl. Phys. 68:4741 (1990).Google Scholar
20. Eastabrook, J. N. and Wilson, A. J. C., Proc. Phys. Soc. Lond. B65:67 (1952).Google Scholar
21. Suortti, P., Ahtee, M., and Unonius, L., J. Appl. Cryst. 12:365 (1979).Google Scholar
22. Young, R. A. and Wiles, D. B., J. Appl. Cryst. 15:430 (1982).Google Scholar
23. Delhez, R., de Keijser, Th. H., Langford, J. I., Louer, D., Mhtemeijer, R. L., and Sonneve, E. S. Ed, in The Rietveld method (International Union of Crystallography, Oxford University Press, New York, 1993), p. 132.Google Scholar
24. Bail, A. L., in Accuracy in Powder Diffraction II , NIST Special Publication No. 846, edited by E. Prince and Stalick, J. K. (National Institute of Standards and Technology, Washington, D.C, 1992), p. 142 Google Scholar
25. Wiles, D. B. and Young, R. A., J. Appl. Cryst. 14:149 (1981).Google Scholar
26. Larson, A. C. and Von Dreele, R. B., Los Alamos National Laboratory Report No. LA-UR-86-748 (1988).Google Scholar
27. Greaves, C., J. Appl. Cryst. 18:48 (1985).Google Scholar
28. Howard, S. A. and Snyder, R. L., J. Appl. Cryst. 22:238 (1989).7.Th. H. de Keijser, Mittemeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16:309 (1983).Google Scholar
29. Langfcrd, J.L., Cernik, R. J., and Louer, D., J. Appl. Oyst. 24:913 (1991).Google Scholar
30. Loner, D. and Langford, J. I., J. Appl. Cryst. 21:430 (1988)Google Scholar
31. Bail, A. L., Proc. 10th Colloque Rayons X , Siemens, Grenoble, 1985, p. 45.Google Scholar
32. Thompson, P., Reilly, J. J., and Hastings, J. M., J. Less Com. Met. 129:105 (1987).Google Scholar
33. Langford, J. I. and Louer, D., J. Appl. Cryst. 15:20 (1982).Google Scholar