Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:06:51.964Z Has data issue: false hasContentIssue false

Software for Comparative Analysis of Diffraction-Line Broadening

Published online by Cambridge University Press:  06 March 2019

Davor Balzar
Affiliation:
Materials Science and Engineering Laboratory National Institute of Standards and Technology 325 Broadway, Bowlder, Colorado 80303, U.S.A.
Hassel Ledbetter
Affiliation:
Materials Science and Engineering Laboratory National Institute of Standards and Technology 325 Broadway, Bowlder, Colorado 80303, U.S.A.
Get access

Abstract

Program “Breadth” was written for analyzing diffraction-line broadening. The physically broadened line profiles are required as input. The results are calculated according to three ”simplified” integral-breadth methods: Cauchy-Cauchy, Cauchy-Gauss, and Gauss-Gauss. The program output includes volume-weighted coherent domain size and a maximum strain. Furthermore, the root-mean-square strain and both surface-weighted and volume-weighted domain sizes are calculated according to the “double-Voigt” method. This method also allows the accurate determination of both surface-weighted and volume-weighted domain-size distribution functions for specimens showing a dominant size-broadening effect, which gives more detailed information than the mere average value of coherent-domain size. Some examples for ball-milled W (shows simultaneous size-strain broadening) and NiFe2O4 (shows pronounced pure-size broadening) are included.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures, 2nd edition (John Wiley, New York, 1974), p. 661.Google Scholar
2. Stokes, A. R., Proć. Phys. Soc. London 61 (1948) 382.Google Scholar
3. Balzar, D. and Popović, S., J. Appl. Cryst. 29 (1996) 16.Google Scholar
4. Balzar, D. and Ledbetter, H., J. Appl Cryst. 26 (1993) 97.Google Scholar
5. Warren, B. E. and Averbach, B. L., J. Appl. Phys. 23 (1952) 497.Google Scholar
6. Balzar, D., J. Appl. Cryst. 28 (1995) 244.Google Scholar
7. Scherrer, P., Nachr. GOtt. 2 (1918) 98.Google Scholar
8. Stokes, A. R. and Wilson, A. J. C., Proc. Phys. Soc. London 56 (1944) 174.Google Scholar
9. Williamson, G. K. and Hall, W. H., Acta Met. 1 (1953) 22.Google Scholar
10. Langford, J. I., J. Appl. Cryst. 11 (1978) 10. 463Google Scholar
11. Warren, B. E., in Progress in Metal Physics, Vol. 8, edited by Chalmers, B. and King, R. (Pergamon Press, London, 1959), p. 146.Google Scholar
12. Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J., Fresenius Z. Anal. Chem. 312 (1982) 1.Google Scholar
13. Balzar, D. and Ledbetter, H., Adv. X-ray Anal 38 (1995) 397.Google Scholar
14. Wertheim, G. K., Butler, M. A., West, K. W., and Buchanan, D. N. E., Rev. Sci. lustrum. 11 (1974) 1369.Google Scholar
15. Hall, M. M. Jr., Veeraraghavan, V. G., Rubin, H., and Winchell, P. G., J. Appl. Cryst. 10 (1977) 66.Google Scholar
16. Langford, J. I., Accuracy in Powder Diffraction II, NEST Special Publication 846 (U. S. Government Printing Office, Washington D.C., 1992), p. 110.Google Scholar
17. de Keijser, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P., J. Appl. Cryst. 15 (1982) 308.Google Scholar
18. de Keijser, Th. H., Mittemeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16 (1983) 309.Google Scholar
19. Balzar, D., J. Res. Natl. Inst. Stand. Technol. 98 (1993) 321.Google Scholar
20. Warren, B. E., X-ray Diffraction (Addison Wesley, Reading, MA, 1969), p. 251.Google Scholar
21. Haider, N. C. and Wagner, C. N. J., Acta Cryst. 20 (1966) 312.Google Scholar
22. Balzar, D., Ledbetter, H., and Roshko, A., Pow. Diffr. 8 (1993) 2.Google Scholar
23. Balzar, D. and Ledbetter, H., J. Mater. Sci. Lett. 11 (1992) 1419.Google Scholar
24. Balzar, D., J. Appl. Cryst. 25 (1992) 559.Google Scholar