Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T13:28:26.447Z Has data issue: false hasContentIssue false

On the Sampling Depth of Total Electron Yield (Tey) Measurements

Published online by Cambridge University Press:  06 March 2019

Horst Ebel
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Robert Svagera
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Maria F. Ebel
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Norbert Zagler
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Wolfgang S.M. Wemer
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Herbert Stön
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Martin Gröschl
Affiliation:
Technische Universität Wien A 1040 Vienna (Austria), Wiedner Hauptstraβe 8-10
Get access

Extract

Photoabsorption of x-rays in solids causes primary and secondary photo and Auger electrons. The latter are from self absorption of characteristic radiations which have been produced in the solid by radiative de-excitation of photoionized atoms. Whereas the energy of the electrons at the origin is described by discrete values of a few eV up to nearly the energy of the photoabsorbed photons, we observe after the escape of the electrons from the solid a continuous energy distribution with a superposition of the original line spectrum. This is explained by inelastic collisions of the electrons in the course of their migration through the solid and the subsequent loss of kinetic energy. Since the electron range decreases with decreasing kinetic energy, only a relatively small amount of electrons is able to reach the surface and to escape from there.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ebel, H., Svagera, R., Ebel, M. F., and Zagier, N., Adv. in X-Ray Anal. (in press)Google Scholar
2 Martens, G., Rabe, P., Tolkiehn, G., and Werner, A., phys. stat. sol. (a)55: 105 (1979)Google Scholar
3 Jones, R. G., and Woodruff, D. P., Surf. Sci. 114: 38 (1982)Google Scholar
4 Erbil, A., Cargill, G. S., Frahm, R., and Bohme, R. F., Phys. Rev. B37: 2450 (1988)Google Scholar
5 Abbate, M., Goedkoop, J. B., de, F. M. F. Groof, Grioni, M., Fuggle, J. C., Hofrnann, S., Petersen, H., and Sacchi, M., Surf. Interface Anat. 18:65 (1992)Google Scholar
6 Vogel, J., and Sacchi, M., J. Electron Spectrosc. Relat. Phenom. 67: 181 (1994)Google Scholar
7 Reimer, L., Scanning Electron Microsc. II: 111 (1979)Google Scholar
8 Berger, M. J., and Seitzer, S. M., NASA Report No:Sp-3112, 1964 unpublished); NASA Report No. Sp-313(5, 1966 (unpublished) (available from National Technical Information Service, U. S. Department of Commerce, Springfield, VA 22161).Google Scholar
9 Sugiyama, H., Jpn. Bull. Electrotechn. Lab. 38: 351 (1974)Google Scholar
10 Ebel, H., Svagera, R., Ebel, M. F., and Zagler, N. (this volume)Google Scholar
11 Ebel, H., Svagera, R., and Zagler, N., Mikrochimica Acta (in press)Google Scholar
12 Ebel, H., Svagera, R., Ebel, M. F., Zagler, N., Werner, W. S. M., Störi, H., and Gröschl, M., Surf, Interface Anal. (in press)Google Scholar