Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T11:18:22.360Z Has data issue: false hasContentIssue false

Description of X-ray Tube Spectra by the Depth Distribution Function of Pochou and Pichoir

Published online by Cambridge University Press:  06 March 2019

B. Schoβmann
Affiliation:
Technische Universität Wien Inst. für Angewandte und Tech. Physik Wiedner Hauptstraβe 8-10, A-1040 Vienna, Austria
J. Wernisch
Affiliation:
Technische Universität Wien Inst. für Angewandte und Tech. Physik Wiedner Hauptstraβe 8-10, A-1040 Vienna, Austria
H. Ebel
Affiliation:
Technische Universität Wien Inst. für Angewandte und Tech. Physik Wiedner Hauptstraβe 8-10, A-1040 Vienna, Austria
Get access

Extract

We have developed an algorithm for calculating the x-ray tube continuum based on the depth distribution function (DDF) proposed by Pochou and Pichoir, extended the description of white and characteristic radiation given by Wiederschwinger et al. to the low energy range from 5 to 30 keV and compared the results frorn these algorithms to the signals obtained from algorithms using the absorption correction of Philibert and of Sewell et al. Preceding calculations the measured spectra were separated into characteristic peak spectra and into the corresponding white spectra, where the background below the peak areas was numerically interpolated.

Type
IV. New Developments in X-Ray Sources, Instrumentation and Techniques
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Handbook of X-Ray Spectrometry, Ed. Van Grieken, R. F. and Markowicz, A. A., Marcel Dekker, Inc. (1993).Google Scholar
2. Gertner, I., Heber, O., Zajfman, J., Zajfman, D. and Rosner, B., Nucl. Instr. and Meth. B36, 7481 (1989).Google Scholar
3. Piori, C. E., Myklebust, R. L. and Heinrich, K. F. J., Aiial. Chem. 48,172 (1076).Google Scholar
4. Smith, D. G. W. and Reed, S. J. B., X-Ray Spectrom. 10, 4, 198202 (1981).Google Scholar
5. Kramers, H. A., Phifos. Mag. 46, 836871 (1923).Google Scholar
6. Ebel, H., Wiedersclrwinger, H. and Wernisch, J., Adv. X-Ray Anal. 35, 721 (1992).Google Scholar
7. Pouchou, J. L. and Pichoir, F., Electron Probe Quantitation, Ed. Heinrich and Newbury, Plenum Press, 3175 (1991).Google Scholar
8. Sewell, D. A., Love, G. and Scott, V. D., J.Phys.D: Appl. Phys. 181269-1280 (1985).Google Scholar
9. Statham, P. J., X-Ray Spectrom. 5, 154168 (1976).Google Scholar
10. Pella, P. A., Feng, Liangyuan and Small, J. A., X-Ray Spectrom. 14, 3, 125135 (1985).Google Scholar
11. McMaster, W. H., del Grande, N. K., Mallett, J. H. and Hubbell, J. H., Compilation of X-Ray Cross Sections, UCRL-50174, Sect. II, Rev. 1. Lawrence Radiation Laboratory, University of California, Livermore, CA (1969).Google Scholar
12. Myklebust, R. L., J. Phys. 45 (Suppl. 2), C2-41 (1984).Google Scholar
13. Jolmson, G. G. Jr. and White, E. W., X-Ray Emission and keV Tables for Nondiffractive Analysis, ASTM Data series DS 46, Philadelphia (1970).Google Scholar