Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T03:32:30.602Z Has data issue: false hasContentIssue false

An Algorithm for the Description of White and Characteristic Tube Spectra (11 ≤ Z ≤ 83, 10keV ≤ Eo ≤ 50keV)

Published online by Cambridge University Press:  06 March 2019

H. Ebel
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien, A 1040 Wien, Austria
H. Wiederschwinger
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien, A 1040 Wien, Austria
J. Wernisch
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien, A 1040 Wien, Austria
P.A. Pella
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899, USA
Get access

Extract

Kramers described the cross section of electron interaction with target atoms of atomic number Z by

where Eo is the kinetic energy of impinging electrons, and E o S) the energy of x-ray photons of the continuum, Smith et al modified this equation, introducing an exponent x, so that

We applied the cross-section σS, E to the evaluation of experimental results. The evaluation of the measured spectral responses of the x-ray signals nE was performed by

where f(deff) describes the absorption of x-rays of energy E in the target, RE accounts for backscattering of electrons, DE quantifies the efficiency of x-ray detection within the solid angle Ω.

Type
X. Mathematical Methods in X-Ray Spectrometry (XRS)
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kramers, H. A., Phil.Mag. 46, 836 (1923)10.1080/14786442308565244Google Scholar
2 Smith, D. G. W., Gold, C. M. and Tomlinson, D. A., X-Ray Spectrometry 4, 149 (1975)10.1002/xrs.1300040311Google Scholar
3 Efcel, H., Ebel, M. F., Wernisch, J., Ch.Pohn and Wiederschwinger, H., X-Ray Spectrometry 18, 89 (1989)Google Scholar
4 Kulenkampff, H., Ann.Phys. 69, 548 (1923)Google Scholar
5 McMaster, W. H., del Grande, N. K., Mallett, J. H. and Hubbell, J. H., Compilation of X-Ray Cross-Sections, UCRL-50174, Sect,II, Kev.l. Lawrence Radiation Laboratory, University of California, Livermore, CA. (1969)Google Scholar
6 Love, G. and Scott, V. D., J.Phys.D 13, 995 (1980)10.1088/0022-3727/13/6/010Google Scholar
7 Love, G., Cox, M. G. and Scott, V. D., J.Phys.D 11, 7 (1978)10.1088/0022-3727/11/1/004Google Scholar
8 Love, G. and Scott, V. D., Scanning 4, 111 (1981)10.1002/sca.4950040302Google Scholar
9 Bloch, F., Z.Phys. 81, 363 (1933)10.1007/BF01344553Google Scholar
10 Hunger, H. J. and Kiichler, L., Phys.Status Solid! A56, K45 (1979)10.1002/pssa.2210560157Google Scholar
11 Mott, N. F. and Massey, H. S. W., The Theory of Atomic collisions, Oxford University Press, London (1949)Google Scholar
12 August, H. J., Razka, R. and Wernisch, J., Scanning 10, 107 (1988)10.1002/sca.4950100303Google Scholar
13 Pohn, Ch., Wernisch, J. and Hanke, W., X-Ray Spectrometry 14, 120 (1985)10.1002/xrs.1300140305Google Scholar
14 Johnson, G. G. Jr. and White, E. W., X-Ray Emission and keV Tables for Nondiffractive Analysis, ASTM Data series DS 46, Philadelphia (1970)10.1520/DS46-EBGoogle Scholar
15 Fella, P. A., Feng, L. Y. and Small, J. A., X-Ray Spectrometry 14, 125 (1985)Google Scholar