Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T11:17:34.681Z Has data issue: false hasContentIssue false

Why a Standardization of Strontium Isotope Baseline Environmental Data Is Needed and Recommendations for Methodology

Published online by Cambridge University Press:  27 March 2017

Deanna N. Grimstead
Affiliation:
Department of Anthropology, Ohio State University, 4034 Smith Laboratory, 174 W. 18th Ave., Columbus, OH 43210-1106, USA ([email protected])
Selin Nugent
Affiliation:
Department of Anthropology, Ohio State University, 4034 Smith Laboratory, 174 W. 18th Ave., Columbus, OH 43210-1106, USA ([email protected])
Jean Whipple
Affiliation:
Department of Anthropology, Ohio State University, 4034 Smith Laboratory, 174 W. 18th Ave., Columbus, OH 43210-1106, USA ([email protected])

Abstract

Since initial applications of strontium isotope human sourcing in the early 1990s, the use of the method has steadily increased in archaeology and in anthropology more broadly. Despite this trend, the collection of necessary baseline environmental data has not been standardized and sometimes does not occur at all. A thorough environmental sampling strategy will ensure that all the variability within a selected region is documented, which is a critical step to improving the accuracy of sourcing studies. Furthermore, shared strontium baseline data collections are needed to improve the intercomparability of datasets and results. This paper provides a case study from a semiarid region in northwestern New Mexico, USA, highlighting the need for a bottom-up approach to baseline data collection (from bedrock to animal) and describes the methods of pre-field planning and collecting, including rationales for what samples to collect for Sr isotope baseline data. The authors hope that this paper will lay a foundation for the implementation and standardization of Sr isotope baseline data collecting, which does not currently exist.

Desde las primeras aplicaciones del estudio de isótopos de estroncio para determinar la procedencia de restos humanos en la década de 1990, el uso de este método ha incrementado de manera constante en la arqueología y la antropología en general. A pesar de tal aumento, la colección de datos ambientales de referencia no ha sido estandarizada y a veces no ocurre. Una estrategia de muestreo ambiental exhaustiva garantiza que se documente toda la variabilidad dentro de una región, lo que es un paso crítico para mejorar la precisión de los estudios de procedencia. Además, es necesario mantener bases de datos de referencia compartidas para mejorar la comparabilidad de datos y resultados. En este artículo se presenta un estudio de caso desde la zona semiárida del noroeste de Nuevo México, EE.UU., donde se destaca la necesidad de un enfoque ascendente a la colección de datos de referencia, desde la roca madre hacia los animales. También se describen los métodos para la planificación pre-campo y la recolección de datos. Se describe el uso conjunto de las muestras de estroncio, oxígeno y carbono, y los factores que se deben considerar en la selección de muestras de referencia. No hay manera de reemplazar la formación en el campo con instrucción profesional; sin embargo, en caso que los nuevos practicantes no tengan acceso a este tipo de formación, esperamos que este artículo sirva como guía de campo.

Type
Articles
Copyright
Copyright 2017 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Balasse, Marie, and Ambrose, Stanley H. 2002 The Seasonal Mobility Model for Prehistoric Herders in the South-Western Cape of South Africa Assessed by Isotopic Analysis of Sheep Tooth Enamel. Journal of Archaeological Science 29:917932.Google Scholar
Bendrey, Robin, Hayes, T. E., and Palmer, Martin R. 2009 Patterns of Iron Age Horse Supply: An Analysis of Strontium Isotope Ratios in Teeth. Archaeometry 51 (1):140150.Google Scholar
Benson, Larry V. 2012 Development and Application of Methods Used to Source Prehistoric Southwestern Maize: A Review. Journal of Archaeological Science 39:791807.Google Scholar
Benson, Larry V., Hattori, Eugene M., Taylor, H. E., Poulson, Simon R., and Jolie, Edward A. 2006 Isotope Sourcing of Prehistoric Willow and Tule Textiles Recovered from Western Great Basin Rock Shelters and Caves: Proof of Concept. Journal of Archaeological Science 33:15881599.Google Scholar
Benson, Larry V., Stein, John R., and Taylor, H. E. 2009 Possible Sources of Archaeological Maize Found in Chaco Canyon and Aztec Ruin, New Mexico. Journal of Archaeological Science 36:387407.CrossRefGoogle Scholar
Beyer, W. Nelson, Connor, Erin E., and Gerould, Sara 1994 Estimates of Soil Ingestion by Wildlife. Journal of Wildlife Management 58:375382.Google Scholar
Britton, Kate, Grimes, Vaughn, Niven, Laura, Steele, Teresa E., McPerron, Shannon, Soressi, Marie, Kelly, Tegan E., Jaubert, Jacques, Hublin, Jean-Jacques, and Richards, Michael P. 2011 Strontium Isotope Evidence for Migration in Late Pleistocene Rangifer: Implications for Neanderthal Hunting Strategies at the Middle Paleolithic Site od Jonzac, France. Journal of Human Evolution 61:176185.Google Scholar
Buzon, Michele R., and Simonetti, Antonio 2013 Strontium Isotope (87Sr/86Sr) Variability in the Nile Valley: Identifying Residential Mobility during Ancient Egyptian and Nubian Sociopolitical Changes in the New Kingdom and Napatan Periods. American Journal of Physical Anthropology 151:19.Google Scholar
Capo, Rosemary C., and Chadwick, Oliver A. 1999 Sources of Strontium and Calcium in Desert Soil and Calcrete. Earth and Planetary Science Letters 170:6172.CrossRefGoogle Scholar
Capo, Rosemary C., Stewart, Brian W., and Chadwick, Oliver A. 1998 Strontium Isotopes as Tracers of Ecosystem Processes: Theory and Methods. Geoderma 82:197225.CrossRefGoogle Scholar
Davenport, Peter H., and Nolan, L. W. 1991 Definition of Large Scale Zones of Hydrothermal Alteration by Geochemical Mapping Using Organic Lake Sediment. Transactions of the Institution of Mining and Metallurgy, Sect. B, Applied Earth Science 100:111122.Google Scholar
Dufour, Elise, Holmden, Chris, Van Neer, Wim, Zazzo, Antoine, Patterson, William P., Degryse, Patrick, and Keppens, Eddy 2007 Oxygen and Strontium Isotopes as Provenance Indicators of Fish at Archaeological Sites: The Case Study of Sagalassos, SW Turkey. Journal of Archaeological Science 34:12261239.Google Scholar
Durand, Steve R., and Shelley, Phillip H. 1999 Trees, Chemistry, and Prehistory in the American Southwest. Journal of Archaeological Science 26:185203.CrossRefGoogle Scholar
English, Nathan, Betancourt, Julio L., Dean, Jeff S., and Quade, Jay 2001 Strontium Isotopes Reveal Distant Sources of Architectural Timber in Chaco Canyon, New Mexico. Proceedings of the National Academy of Sciences 98:1189111896.Google Scholar
Ericson, Jonathon E. 1985 Strontium Isotope Characterization in the Study of Prehistoric Human Ecology. Journal of Human Evolution 14:503514.Google Scholar
Evans, Jane A., Montgomery, Janet, and Wildman, G. 2009 Isotope Domain Mapping of 87Sr/86Sr Biosphere Variation on the Isle of Skye, Scotland. Journal of the Geological Society 166:617631.Google Scholar
Evans, Jane A., and Tatham, S. 2004 Defining “Local Signature” in Terms of Sr Isotope Composition Using a Tenth to Twelfth-Century Anglo-Saxon Population Living on a Jurassic Clay-Carbonate Terrain, Rutland, UK. Forensic Geoscience: Principles, Techniques, and Applications 232:237248.Google Scholar
Ezzo, Joseph A., Johnson, Clark M., and Price, T. Douglas 1997 Analytical Perspectives on Prehistoric Migration: A Case Study from East-Central Arizona. Journal of Archaeological Science 24:447466.Google Scholar
Flockhart, D. T. Tyler, Kyser, T. Kurt, Chipley, Don, Miller, Nathan G., and Norris, D. Ryan 2015 Experimental Evidence Shows No Fractionation of Strontium Isotopes (87Sr/86Sr) among Soil, Plants, and Herbivores: Implications for Tracking Wildlife and Forensic Science. Isotopes in Environmental and Health Studies 51 (3):372381.Google Scholar
Fordyce, Fiona M., Green, P. M., and Simpson, P. R. 1993 Simulation of Regional Geochemical Survey Maps at Variable Sample Density. Journal of Geochemical Exploration 49:191–175.CrossRefGoogle Scholar
Frei, Karin M., and Frei, Robert 2011 The Geographic Distribution of Strontium Isotopes in Danish Surface Waters: A Base for Provenance Studies in Archaeology, Hydrology and Agriculture. Applied Geochemistry 26:326340.CrossRefGoogle Scholar
Garrett, Robert G., Banville, Roxane M. P., and Adcock, Stephen W. 1990 Regional Geochemical Data Compilation and Map Preparation, Labrador, Canada. Journal of Geochemical Exploration 39:91116.Google Scholar
Graustein, William C., and Armstrong, Richard L. 1983 The Use of 87Sr/86Sr to Measure Atmospheric Transport into Forested Watershed. Science 219:2890–292.Google Scholar
Gregoricka, Lesley A. 2013 Residential Mobility and Social Identity in the Periphery: Strontium Isotope Analysis of Archaeological Tooth Enamel from Southeastern Arabia. Journal of Archaeological Science 40:452464.Google Scholar
Grimstead, Deanna N., Buck, Sharon, Vierra, Bradley J., and Benson, Larry 2015 Another Possible Source of Archaeological Maize Found in Chaco Canyon, NM: The Tohatchi Flats Area, NM, USA. Journal of Archaeological Science: Reports 3:181187.Google Scholar
Grimstead, Deanna N., Quade, Jay, and Stiner, Mary C. 2016 Isotopic Evidence for Long-Distance Procurement and Resource Depletion, Chaco Canyon, New Mexico. Geoarchaeology 31 (5):335354.CrossRefGoogle Scholar
Grimstead, Deanna N., Nugent, Selin, and McGuire, Sara 2017 Differential Bioavailability of Strontium in Food, Implications for 87Sr/86Sr Sourcing in Bone and Teeth. Manuscript on file, Department of Anthropology, Ohio State University, Columbus, Ohio.Google Scholar
Grimstead, Deanna N., Reynolds, Amanda C., Hudson, Adam M., Akins, Nancy J., and Betancourt, Julio L. 2016 Using Strontium Isotope Population Variance in Turkey Remains to Evaluate Domestication: A Case Study from Chaco Canyon, New Mexico, U.S.A. Journal of Archaeological Method and Theory 23:127149.Google Scholar
Hoppe, Kathryn A. 2004 Late Pleistocene Mammoth Herd Structure, Migration Patterns, and Clovis Hunting Strategies Inferred from Isotopic Analyses of Multiple Death Assemblages. Paleobiology 30:129145.2.0.CO;2>CrossRefGoogle Scholar
Knudson, Kelly J. 2008 Tiwanaku Influence in the South Central Andes: Strontium Isotope Analysis and Middle Horizon Migration. Latin American Antiquity 19:323.Google Scholar
Knudson, Kelly J., Gardella, Kristin R., and Yaeger, Jason 2012 Provisioning Inka Feasts at Tiwanaka, Bolivia: The Geographic Origins of Camelids in the Pumapunka Complex. Journal of Archaeological Science 39:479491.Google Scholar
Koch, Paul L., Halliday, Alex N., Walter, Lynn N., Stearley, Ralph F., Huston, Ted J., and Smith, Gerald R. 1992 Sr Isotopic Composition of Hydroxyapatite from Recent and Fossil Salmon: The Record of Lifetime Migration and Diagenesis. Earth and Planetary Science Letters 108:277287.Google Scholar
Kohn, Matthew J., Morris, Jennifer, and Olin, Paul 2013 Trace Element Concentrations in teeth: A Modern Idaho Baseline with Implications for Archaeometry, Forensics, and Palaeontology. Journal of Archaeological Science 40:16891699.Google Scholar
Kootker, Lisette M., van Lanen, Rowin J., Kars, Henk, and Davies, Gareth R. 2016 Strontium Isoscapes in the Netherlands. Spatial Variations in 87Sr/86Sr as a Proxy for Palaeomobility. Journal of Archaeological Science: Reports 6:113.Google Scholar
Montgomery, Janet, Evans, Jane A., Powlesland, Dominic, and Charlotte A. Roberts 2005 Continuity or Colonization in Anglo-Saxon England? Isotope Evidence for Mobility, Subsistence Practice and Atatus at West Heslerton. American Journal of Physical Anthropology 126:123138.Google Scholar
Naiman, Zachary, and Quade, Jay 2000 Isotopic Evidence for Eolian Recycling of Pedogenic Carbonate and Variations in Carbonate Dust Sources throughout the Southwest United States. Geochimica et Cosmochimica Acta 64:30993109.Google Scholar
Pellegrini, Maura, Donahue, Randolph E., Chenery, Carolyn, Evans, Jane, Lee-Thorp, Julia, Montgomery, Janet, and Mussi, Margherita 2008 Faunal Migration in Late-Glacial Central Italy: Implications for Human Resource Exploitation. Rapid Communications in Mass Spectrometry 22:17141726.CrossRefGoogle ScholarPubMed
Price, T. Douglas, and Gestsdóttir, Hildur 2006 The First Settlers of Iceland: An Isotopic Approach to Colonization. Antiquity 80:130144.CrossRefGoogle Scholar
Price, T. Douglas, Burton, James H., and Bentley, R. Alexander 2002 The Characterization of Biologically Available Strontium Isotope Ratios for the Study of Prehistoric Migration. Archaeometry 44:117135.CrossRefGoogle Scholar
Price, T. Douglas, Burton, James, and Stoltman, James B. 2007 Place of Origin of Prehistoric Inhabitants of Aztalan, Jefferson Co., Wisconsin. American Antiquity 72:524538.Google Scholar
Price, T. Douglas, Grupe, Gisela, and Schröter, Peter 1994 Reconstruction of Migration Patterns in the Bell Beaker Period by Stable Strontium Isotope Analysis. Applied Geochemistry 9:413417.Google Scholar
Price, T. Douglas, Johnson, Clark M., Ezzo, Joseph A., and Burton, James H. 1994 Residential Mobility in the Prehistoric Southwest United States: A Preliminary Study Using Strontium Isotope Analysis. Journal of Archaeological Science 21:315330.Google Scholar
Price, T. Douglas, Manzanilla, Linda, and Middleton, William D. 2000 Immigration and the City of Teotihuancan in Mexico: A Study Using Strontium Isotope Ratios in Human Bone and Teeth. Journal of Archaeological Science 27:903913.CrossRefGoogle Scholar
Reynolds, Amanda C., Betancourt, Julio L., Quade, Jay, Patchett, P. John, Dean, Jeff S., and Stein, John 2005 87Sr/86Sr Sourcing of Ponderosa Pine Used in Anasazi Great House Construction at Chaco Canyon, New Mexico. Journal of Archaeological Science 32:10611075.Google Scholar
Reynolds, Amanda C., Quade, Jay, and Betancourt, Julio L. 2012 Strontium Isotope and Nutrient Sourcing in a Semi-Arid Woodland. Geoderma 189–190:574584.Google Scholar
Schweissing, Matthew Mike, and Grupe, Gisela 2003 Stable Strontium Isotopes in Human Teeth and Bone: A Key to Migration Events of the Late Roman Period Bavaria. Journal of Archaeological Science 30:13731383.Google Scholar
Sealy, Judith C., Armstrong, Richard, and Schrire, Carmel 1995 Beyond Lifetime Averages: Tracing Life Histories through Isotopic Analysis of Different Calcified Tissues from Archaeological Human Skeletons. Antiquity 69:290300.Google Scholar
Sealy, J. C., Van Der Merwe, Nikolaas Johannes, Sillen, Andrew, Kruger, Frederick J., and Krueger, Harold W. 1991 87Sr/86Sr as a Dietary Indicator in Modern and Archaeological Bone. Journal of Archaeological Science 18:399416.Google Scholar
Sillen, Andrew, and Kavanagh, Maureen 1982 Strontium And Paleodietary Research: A Review. Physical Anthropology 25:6769.CrossRefGoogle Scholar
Slovak, Nicole M., Paytan, Adina, and Wiegand, Bettina A. 2009 Reconstructing Middle Horizon Mobility Patterns on the Coast of Peru through Strontium Isotope Analysis. Journal of Archaeological Science 36:157165.Google Scholar
Van der Hoven, Stephen J., and Quade, Jay 2002 Tracing Spatial and Temporal Variations in the Sources of Calcium in Pedogenic Carbonates in a Semiarid Environment. Geoderma 108:259276.Google Scholar
Warham, Joseph O. 2012 Mapping Biosphere Strontium Isotope Ratios across Major Lithologic Boundaries. Unpublished Ph.D. Dissertation, Division of Archaeological, Geographical, and Environmental Sciences, University of Bradford, Bradford, UK.Google Scholar
Wright, Lori E. 2005 Identifying Immigrants to Tikal, Guatemala: Defining Local Variability in Strontium Isotope Ratios of Human Tooth Enamel. Journal of Archaeological Science 32:555566.Google Scholar
Zazzo, Antonio, Monahan, Frank J., Moloney, Adian P., Green, Stuart, and Schmidt, Olaf 2011 Sulphur Isotopes in Animal Hair Track Distance to Sea. Rapid Communications in Mass Spectrometry 25:23712378.CrossRefGoogle ScholarPubMed
Supplementary material: File

Grimstead supplementary material

Grimstead supplementary material 1

Download Grimstead supplementary material(File)
File 19.1 KB