Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T19:38:14.360Z Has data issue: false hasContentIssue false

Using Lidar and GIS to Investigate Water and Soil Management in the Agricultural Terracing at Caracol, Belize

Published online by Cambridge University Press:  16 January 2017

Adrian S.Z. Chase
Affiliation:
Arizona Sate University, PO Box 872402, Tempe, AZ 85287-2402 ([email protected])
John Weishampel
Affiliation:
University of Central Florida, P.O. Box 160112, Orlando, FL 32816-0112

Abstract

In April 2009, a lidar survey flown by the National Center for Airborne Laser Mapping recorded 200 square kilometers of terrain that comprised the Classic Period Maya city of Caracol, Belize. The data revealed a highly manipulated landscape of dense settlement, agricultural terraces, and residential reservoirs. Literature on Maya agriculture has discussed the benefits of terraces in controlling soil erosion, retaining water, and managing the gravitational flow of water; however, until now these benefits have not been quantified or demonstrated on the ground at scale. This research utilizes these lidar data and data derivatives in order to test the degree to which the ancient Maya manipulated their environment and were able to support large-scale populations through their landscape management practices. As such, the research provides evidence supporting the significance of agricultural terraces and their impact on limiting soil erosion, increasing water retention, and permitting flow control over rainfall runoff. This research also highlights the conscious effort by the ancient Maya to manage the hydrology of their terraced landscape.

En Abril de 2009 Centro Nacional para Mapas Láser en Vuelo (NCALM) realizo un levantamiento aéreo utilizando lidar con el que se mapeo la topografía de 200 kilómetros cuadrados que incluyen ciudad Maya de Caracol en Belice que corresponde al periodo clásico. Los datos revelaron una topografía altamente modificada con asentimientos densos, terrazas agrícolas y represas hídricas residenciales. La literatura sobre agricultura Maya ha discutido las ventajas de las terrazas agrícolas para controlar la erosión de los suelos, retener y manejar el flujo gravitacional del agua; sin embargo, hasta ahora estas ventajas no han podido ser cuantificadas o demostrados en el campo a gran escala. Este estudio utiliza los datos de lidar y datos derivados para determinar el grado en que los antiguos Mayas manipularon su medio ambiente para poder sostener grandes poblaciones a través de sus prácticas de manejo y modificación del terreno. Como tal, la investigación proporciona evidencia para soporta la importancia de las terrazas agrícolas y su impacto en la reducción de la erosión de los suelos, aumentar la retención de agua, y el controlar de el flujo de las aguas lluvias. Además, este estudio destaca el esfuerzo intencional de los antiguos Mayas para manejar la hidrología de su terracería agrícola.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ackermann, Oren, Svoray, Tal, and Haiman, Mordechai 2008 Nari (calcrete) Outcrop Contribution to Ancient Agricultural Terraces in the Southern Shephelah, Israel: Insights from Digital Terrain Analysis and a Geoarchaeological Field Survey. Journal of Archaeological Science 35(4):930941.CrossRefGoogle Scholar
Beven, K. 1997 TOPMODEL: A Critique. Hydrological Processes 11(9):10691085.Google Scholar
Beven, K. J., and Kirkby, M. J. 1979 A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrological Sciences Journal 24(1):4369.Google Scholar
Boserup, Ester 1965 The Conditions of Agricultural Growth. AldineTransaction, New Brunswick, New Jersey.Google Scholar
Brookfield, Harold C. 1972 Intensification and Disintensification in Pacific Agriculture: A Theoretical Approach. Pacific Viewpoint 13(1):3048.CrossRefGoogle Scholar
Burrough, Peter A. 1998 Chapter 9: Dynamic Modelling and Geocomputation. In Geocomputation: A Primer, edited by Longley, Paul, Brooks, Sue, McDonnell, Rachael, MacMillan, Bill, pp. 165192. John Wiley & Sons, New York City, New York.Google Scholar
Chase, Adrian S. Z. 2012 Beyond Elite Control: Water Management at Caracol, Belize. Unpublished undergraduate thesis, Department of Anthropology, Harvard College, Cambridge, Massachusetts.Google Scholar
Chase, Arlen F., and Chase, Diane Z. 1987 Investigations at the Classic Maya City of Caracol, Belize, 1985–1987 3. Pre-Columbian Art Research Institute, San Francisco.Google Scholar
Chase, Arlen F., and Chase, Diane Z. 1994 Details in the Archaeology of Caracol, Belize: An Introduction. In Studies in the Archaeology of Caracol, Belize. Monograph 7, edited by Chase, Diane Z., Chase, Arlen F., pp. 154. Pre-Columbian Art Research Institute, San Francisco, California.Google Scholar
Chase, Arlen F., and Chase, Diane Z. 1998 Scale and Intensity in Classic Period Maya Agriculture: Terracing and Settlement at the “Garden City” of Caracol, Belize. Culture & Agriculture 20(2–3):6077.Google Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, and Brown, M. Kathryn 2014 The Use of LiDAR in Understanding the Ancient Maya Landscape. Advances in Archaeological Practice: A Journal of the Society for American Archaeology 3(1):147160.Google Scholar
Chase, Arlen F., Chase, Diane Z., and Weishampel, John F. 2010 Lasers in the Jungle: Airborne Sensors Reveal a Vast Maya Landscape. Archaeology 63(4):2729.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38(2):387398.Google Scholar
Conklin, Harold C. 1961 The Study of Shifting Cultivation. Current Anthropology 2(1):2761.Google Scholar
Coultas, C. Lynn, Collins, Mary, and Chase, Arlen F. 1984 Some Soils Common to Caracol, Belize and Their Significance to Ancient Agriculture and Land Use. In Studies in the Archaeology of Caracol, Belize, edited by Chase, Diane Z. and Chase, Arlen F., pp. 2133. vol. Monograph 7. Pre-Columbian Art Research Institute, San Francisco, California.Google Scholar
Coultas, C. Lynn, Collins, Mary, and Chase, Arlen F. 1993 Effect of Ancient Maya Agriculture on Terraced Soils of Caracol, Belize. Proceedings of the Proceedings of the First International Conference on Pedo-Archaeology. 191201. University of Tennessee, Knoxville, Tennessee.Google Scholar
Doneus, Michael 2013 Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sensing 5(12):64276442.Google Scholar
Donkin, Robin Arthur 1979 Agricultural Terracing in the Aboriginal New World. University of Arizona Press, Tucson.Google Scholar
Dorshow, Wetherbee Bryan 2012 Modeling Agricultural Potential in Chaco Canyon During the Bonito Phase: A Predictive Geospatial Approach. Journal of Archaeological Science 39(7):20982115.Google Scholar
Dumond, D. E. 1961 Swidden Agriculture and the Rise of Maya Civilization. Southwestern Journal of Anthropology 17(4):301316.Google Scholar
Dunning, Nicholas P., and Beach, Timothy 1994 Soil Erosion, Slope Management, and Ancient Terracing in the Maya Lowlands. Latin American Antiquity 5(1):5169.Google Scholar
Evans, Damian H., Fletcher, Roland J., Pottier, Christophe, Chevance, Jean-Baptiste, Soutif, Dominique, Tan, Boun Suy, Im, Sokrithy, Ea, Darith, Tin, Tina, Kim, Samnang, Cromarty, Christopher, De Greef, Stéphane, Hanus, Kasper, Bâty, Pierre, Kuszinger, Robert, Shimoda, Ichita, and Boornazian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor Using Lidar. Proceedings of the National Academy of Sciences 110(31):1259512600.CrossRefGoogle ScholarPubMed
Fernandez-Diaz, Juan Carlos, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6(10):995110001.CrossRefGoogle Scholar
Flannery, Kent V. 1982 Maya Subsistence: Studies in Memory of Dennis E. Puleston, edited by Harrison, Peter D., Turner, Billie Lee II. Academic Press, New York City, New York.Google Scholar
Florinsky, I. V. 1998 Combined Analysis of Digital Terrain Models and Remotely Sensed Data in Landscape Investigations. Progress in Physical Geography 22(1):3360.Google Scholar
Florinsky, I. V., Eilers, R. G., Manning, G. R., and Fuller, L. G. 2002 Prediction of Soil Properties by Digital Terrain Modelling. Environmental Modelling & Software 17(3):295311.Google Scholar
French, Kirk D., Duffy, Christopher J., and Bhatt, Gopal 2013 The Urban Hydrology and Hydraulic Engineering at the Classic Maya Site of Palenque. Water History 5(1):4369.CrossRefGoogle Scholar
Geertz, Clifford 1963 Agricultural involution: the Process of Ecological Change in Indonesia 11. University of California Press, Berkeley, California.Google Scholar
Harrison, Peter D., and Turner, Billie Lee II 1978 Pre-hispanic Maya Agriculture. University of New Mexico Press, Albuquerque, New Mexico.Google Scholar
Healy, Paul F., Lambert, John D. H., Arnason, J. T., and Hebda, Richard J. 1983 Caracol, Belize: Evidence of Ancient Maya Agricultural Terraces. Journal of Field Archaeology 10(4):397410.Google Scholar
Hesse, Ralf 2010 LiDAR-Derived Local Relief Models: A New Tool for Archaeological Prospection. Archaeological Prospection 17(2):6772.Google Scholar
Hightower, Jessica, Butterfield, A., and Weishampel, John 2014 Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sensing 6(11):10716.CrossRefGoogle Scholar
Jenness, Jeff 2006 Topographic Position Index (tpi_jen.avx) extension for ArcVIEW 3.x, v. 1.2. vol. 2013. Jenness Enterprises. Electronic document, http://www.jennessent.com/acrview/tpi.htm, accessed January 24, 2014.Google Scholar
Kokalj, Žiga, Zakšek, Klemen, and Oštir, Kirštof 2011 Application of Sky-view Factor for the Visualisation of Historic Landscape Features in Lidar-Derived Relief Models. Antiquity 85:263273.Google Scholar
Ladefoged, Thegn N., McCoy, Mark D., Asner, Gregory P., Kirch, Patrick V., Puleston, Cedric O., Chadwick, Oliver A., and Vitousek, Peter M. 2011 Agricultural Potential and Actualized Development in Hawai’i: an Airborne LiDAR Survey of the Leeward Kohala Field System (Hawai’i Island). Journal of Archaeological Science 38(12):36053619.Google Scholar
Lucero, Lisa J. 2006a The Political and Sacred Power of Water in Classic Maya Society. In Precolumbian Water Management: Ideology, Ritual, and Power, edited by Lucero, Lisa J. and Fash, Barbara W., pp. 175195. University of Arizona Press, Tucson.Google Scholar
Lucero, Lisa J. 2006b Water and Ritual: The Rise and Fall of Classic Maya Rulers. University of Texas Press.CrossRefGoogle Scholar
McCoy, Mark D., Asner, Gregory P., and Graves, Michael W. 2011 Airborne Lidar Survey of Irrigated Agricultural Landscapes: An Application of the Slope Contrast Method. Journal of Archaeological Science 38(9):21412154.CrossRefGoogle Scholar
Macrae, Scott A., and Iannone, Gyles 2011 Investigations of the Agricultural Terracing Surrounding the Ancient Maya Centre of Minanha, Belize. Research Reports in Belizean Archaeology 8:183197.Google Scholar
Medina-Elizalde, M., and Rohling, E. J. 2012 Collapse of Classic Maya Civilization Related to Modest Reduction in Precipitation. Science 335(6071):956959.Google Scholar
Meggers, Betty J. 1954 Environmental Limitation on the Development of Culture. American Anthropologist 56(5):801824.CrossRefGoogle Scholar
Moore, I. D., Gessler, P. E., Nielsen, G. A., and Peterson, G. A. 1993 Soil Attribute Prediction Using Terrain Analysis. Soil Science Society of America Journal 57(2):443452.Google Scholar
Moore, Ian D., Turner, A. Keith, Wilson, John P., Jenson, Susan K., and Band, Lawrence E. 1993 Chapter 19: GIS and Land Surface-Subsurface Process Modeling. In Environmental Modeling with GIS, edited by Goodchild, M. F., Parks, B., and Steyaert, L. T., pp. 196230. Oxford University Press, Oxford.Google Scholar
Murtha, Timothy 2002 Land and Labor: Classic Maya Terraced Agriculture at Caracol, Belize. Ph.D., Department of Anthropology, Pennsylvania State University, State College, Pennsylvania.Google Scholar
Scarborough, Vernon L. 1998 Ecology and Ritual: Water Management and the Maya. Latin American Antiquity 9(2):135159.CrossRefGoogle Scholar
Scarborough, Vernon L., and Gallopin, Gary G. 1991 A Water Storage Adaptation in the Maya Lowlands. Science 251(4994):658662.Google Scholar
Scott, James C. 1976 The Moral Economy of the Peasants. Yale University Press, New Haven, Connecticut.Google Scholar
Spencer, Joseph E., and Hale, Gary A. 1961 The Origin, Nature, and Distribution of Agricultural Terracing. Pacific Viewpoint 2(1):140.Google Scholar
Stepinski, Tomasz F., and Jasiewicz, Jaroslaw 2011 Geomorphons—A New Approach to Classification of Landforms. Proceedings of the Proceedings of Geomorphometry 2011:109–112. Redlands, California.Google Scholar
Thomas, D. B., Barber, R. G., and Moore, T. R. 1980 Terracing of Cropland in Low Rainfall Areas of Machakos District, Kenya. Journal of Agricultural Engineering Research 25:5763.Google Scholar
Treacy, John M. 1987 Building and Rebuilding Agricultural Terraces in the Colca Valley of Peru. Yearbook. Conference of Latin Americanist Geographers 13:5157.Google Scholar
Treacy, John M., and Denevan, William M. 1997 Chapter 5: The Creation of Cultivable Land Through Terracing. In The Archaeology of Garden and Field, edited by Miller, Naomi F. and Gleason, Kathryn L., pp. 91110. University of Pennsylvania Press, Philadelphia, Pennsylvania.Google Scholar
Turner, Billie Lee II 1974 Prehistoric Intensive Agriculture in the Mayan Lowlands: Examination of Relic Terraces and Raised Fields Indicates that the Río Bec Maya Were Sophisticated Cultivators. Science 185:118124.Google Scholar
Turner, Billie Lee II 1983 Once Beneath the Forest: Prehistoric Terracing the Río Bec Region of the Maya Lowlands. Westview Press, Boulder, Colorado.Google Scholar
Turner, Billie Lee II, and Harrison, Peter D. 1983 Pulltrouser Swamp: Ancient Maya Habitat, Agriculture, and Settlement in Northern Belize. University of Texas Press, Austin, Texas.Google Scholar
Valdivia, Roberto Oscar 2002 The Economics of Terraces in the Peruvian Andes: an Application of Sensitivity Analysis in an Integrated Assessment Model. Master's thesis, Department of Agricultural Economics & Economics, Montana State University, Bozeman.Google Scholar
Weishampel, John F., Hightower, Jessica N., Chase, Arlen F., and Chase, Diane Z. 2012 Use of Airborne LiDAR to Delineate Canopy Degradation and Encroachment along the Guatemala-Belize Border. Tropical Conservation Science 5(1):1224.CrossRefGoogle Scholar
Weiss-Krejci, Estella, and Sabbas, Thomas 2002 The Potential Role of Small Depressions as Water Storage Features in the Central Maya Lowlands. Latin American Antiquity 13(3):343357.Google Scholar
Wienhold, Michelle L. 2013 Prehistoric Land Use and Hydrology: a Multi-scalar Spatial Analysis in Central Arizona. Journal of Archaeological Science 40(2):850859.CrossRefGoogle Scholar
Wilson, John P., and Gallant, John C. 2000 Digital Terrain Analysis. In Terrain Analysis: Principles and Applications, edited by Wilson, J. P. and Gallant, J. C., pp. 127. John Wiley & Sons, Hoboken, New Jersey.Google Scholar
Wolf, Eric Robert 1966 Peasants 10. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Yang, Qi, Meng, Fan-Rui, Zhao, Zhengyong, Chow, Thien Lien, Benoy, Glenn, Rees, Herb W., and Bourque, Charles P. A. 2009 Assessing the Impacts of Flow Diversion Terraces on Stream Water and Sediment Yields at a Watershed Level Using SWAT Model. Agriculture, Ecosystems & Environment 132(1–2):2331.Google Scholar
Zakšek, Klemen, Oštir, Kristof, and Kokalj, Žiga 2011 Sky-View Factor as a Relief Visualization Technique. Remote Sensing 3:398415.Google Scholar