Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T21:54:06.589Z Has data issue: false hasContentIssue false

Heavy Metals in Archaeological Soils

The Application of Portable X-Ray Fluorescence (pXRF) Spectroscopy for Assessing Risk to Human Health at Industrial Sites

Published online by Cambridge University Press:  18 March 2021

Sarah A. Kennedy*
Affiliation:
Department of Anthropology, University of Pittsburgh, 3302 WWPH, Pittsburgh, PA15260, USA
Sarah J. Kelloway
Affiliation:
Sydney Analytical, University of Sydney, Camperdown, NSW2006, Australia ([email protected])
*
([email protected], corresponding author)

Abstract

Portable X-ray fluorescence (pXRF) spectroscopy is commonly used for testing toxic levels of heavy metals in modern industrial waste sites, and it has seen growing applicability in the context of archaeological survey and soils. In this study, we present the results of our pXRF analysis of surface soils at a historic silver refinery located near Puno, Peru, in the western Lake Titicaca Basin. The results of our analysis identified hazardous levels of antimony (Sb), arsenic (As), mercury (Hg), and lead (Pb) in excavation soils, necessitating the relocation of planned excavation units and the use of personal protective equipment. This study highlights the advantages of rapid, in situ pXRF analysis of surface soils in contaminated industrial archaeology sites to assess potential harm to human health.

La espectroscopía portátil de fluorescencia de rayos X (pFRX) se usa comúnmente para probar niveles tóxicos de metales pesados en sitios industriales modernas, y se ha visto aumentada aplicabilidad en contextos arqueológicos, como prospección y suelos. En este estudio, presentamos los resultados de nuestro análisis pFRX de suelos superficiales de una refinería histórica de plata ubicada cerca de Puno, Perú, en la cuenca occidental del lago Titicaca. Los resultados de nuestro análisis identificaron niveles peligrosos de antimonio (Sb), arsénico (As), mercurio (Hg) y plomo (Pb) en los suelos de excavación, lo que requiere la reubicación de las unidades de excavación planificadas, y el uso del equipo de protección personal. Este estudio recalca las ventajas del análisis rápido e in situ de pFRX de suelos superficiales en sitios de arqueología industrial con contaminación para evaluar los daños posibles a la salud humana.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Abbott, Mark B., and Wolfe, Alexander P. 2003 Intensive Pre-Incan Metallurgy Recorded by Lake Sediments from the Bolivian Andes. Science 301:18931895.CrossRefGoogle ScholarPubMed
Aimers, Jim, Farthing, Dori J., and Shugar, Aaron N. 2012 Handheld XRF Analysis of Maya Ceramics: A Pilot Study Presenting Issues Related to Quantification and Calibration. In Handheld XRF for Art and Archaeology, edited by Shugar, Aaron and Mass, Jennifer, pp. 423448. Leuven University Press, Leuven, Belgium.Google Scholar
Bargalló, Modesto 1955 La minería y la metalurgia en la América Española durante la época colonial. Fondo de Cultura Economica, Mexico City.Google Scholar
Bargalló, Modesto 1966 La química inorgánica y el beneficio de los metales en el México prehispánico y colonial. 1st ed. Química en México: Tomo 1. Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Bargalló, Modesto 1969 La amalgamación de los minerales de plata en hispanoamérica colonial. Compañía Fundidora de Fierro y Acero de Monterrey, Mexico City.Google Scholar
Booth, Adam D., Vandeginste, Veerle, Pike, Dominci, Abbey, Russell, Clark, Roger A., Green, Chris M., Howland, Nathan 2017 Geochemical Insight during Archaeological Geophysical Exploration through in situ X-ray Fluorescence Spectrometry. Archaeological Prospection 24:361372.CrossRefGoogle Scholar
Brent, Robert N., Wines, Hunter, Luther, Joseph, Irving, Nathan, Collins, Joshua, and Drake, Brandon L. 2017 Validation of Handheld X-Ray Fluorescence for In Situ Measurement of Mercury in Soils. Journal of Environmental Chemical Engineering 5:768776.CrossRefGoogle Scholar
Brown, Kendal W. 2001 Workers' Health and Colonial Mercury Mining at Huancavelica, Peru. Americas 57:467496.CrossRefGoogle Scholar
Cañete y Domínguez, Pedro Vicente 1952 [1791] Guía y histórica, geográfica, física, política, civil y legal del Gobierno e Intendencia de la Provincia de Potosí. Colección de la Cultura Boliviana, Los Escritores de la Colonia No. 1. Editorial Potosí, Potosí, Bolivia.Google Scholar
Carr, Ramona, Zhang, Chaosheng, Moles, Norman, and Harder, Marie 2008 Identification and Mapping of Heavy Metal Pollution in Soils of a Sports Ground in Galway City, Ireland, Using a Portable XRF Analyser and GIS. Environmental Geochemistry and Health 30:4552.CrossRefGoogle ScholarPubMed
Clark, Anna 2018 The Poisoned City: Flint's Water and the American Urban Tragedy. Metropolitan Books, Henry Holt and Company, New York.Google Scholar
Cooke, Colin A., Abbott, Mark B., and Wolfe, Alexander P. 2008 Late-Holocene Atmospheric Lead Deposition in the Peruvian and Bolivian Andes. Holocene 18:353359.CrossRefGoogle Scholar
Coronel, Eric G., Bair, Daniel A., Brown, Clifford T., and Terry, Richard E. 2014 Utility and Limitations of Portable X-Ray Fluorescence and Field Laboratory Conditions on the Geochemical Analysis of Soils and Floors at Areas of Known Human Activities. Soil Science 179:258271.CrossRefGoogle Scholar
Frahm, Ellery, Monnier, Gilliane F., Jelinski, Nicolas A., Fleming, Edward P., Barber, Brian L., and Lambon, Justice B. 2016 Chemical Soil Surveys at the Bremer Site (Dakota County, Minnesota, USA): Measuring Phosphorous Content of Sediment by Portable XRF and ICP-OES. Journal of Archaeological Science 75:115138.CrossRefGoogle Scholar
Galaor, Isabel, Gloner, Daniela, Hausberger, Bernd, Höflein, Michael, Probst, Gerlinde, Scheffel, Rita, Thamm, Susanne, and Voel, Ngozi Violetta 1998 Las minas hispanoamericanas a mediados del siglo XVIII: Informes enviados al Real Gabinete de Historia Natural de Madrid. Vervuert, Frankfurt; Iberoamericana, Madrid.Google Scholar
Guerrero, Saul 2016 The History of Silver Refining in New Spain, 16c to 18c: Back to the Basics. History and Technology 32:232.CrossRefGoogle Scholar
Guerrero, Saul 2017 Silver by Fire, Silver by Mercury: A Chemical History of Silver Refining in New Spain and Mexico, 16th to 19th Centuries. Brill, Boston.Google Scholar
Hanks, Bryan 2013 Notes from the Field. IANSA 1(4):35.Google Scholar
Hayes, Katherine 2013 Parameters in the Use of pXRF for Archaeological Site Prospection: A Case Study at the Reaume Fort Site, Central Minnesota. Journal of Archaeological Science 40:31933211.CrossRefGoogle Scholar
Hu, Bifeng, Chen, Songchao, Hu, Jie, Xia, Fang, Xu, Junfeng, Li, Yan, and Shi, Zhou 2017 Application of Portable XRF and VNIR Sensors for Rapid Assessment of Soil Heavy Metal Pollution. PLoS ONE 12(2):e0172438. DOI:10.1371/journal.pone.0172438.CrossRefGoogle ScholarPubMed
Hunt, Alice M., and Speakman, Robert J. 2015 Portable XRF Analysis of Archaeological Sediments and Ceramics. Journal of Archaeological Science 53:626638.CrossRefGoogle Scholar
Jang, Min 2010 Application of Portable X-Ray Fluorescence (pXRF) for Heavy Metal Analysis of Soils in Crop Fields near Abandoned Mine Sites. Environmental Geochemistry and Health 32:207216.CrossRefGoogle ScholarPubMed
Kennedy, Sarah A., and Kelloway, Sarah J. 2019 The Utility of Portable XRF for Preliminary Site Prospection at Contaminated Colonial Period Mining Sites (Puno, Peru). Poster presented at the 84th Annual Meeting for the Society for American Archaeology, Albuquerque, New Mexico.Google Scholar
Kennedy, Sarah A., and Kelloway, Sarah J. 2020a Identifying Metallurgical Practices at a Colonial Silver Refinery in Puno, Peru, Using Portable X-Ray Fluorescence Spectroscopy (pXRF). Journal of Archaeological Science: Reports 33, in press. DOI:10.1016/j.jasrep.2020.102568.Google Scholar
Kennedy, Sarah A., and Kelloway, Sarah J. 2020b Portable X-Ray Fluorescence Spectroscopy (pXRF) at Trapiche Itapalluni, Peru, Mendeley Data, V1. DOI:10.17632/brk2b2tx77.1.CrossRefGoogle Scholar
Killick, David 2015 The Awkward Adolescence of Archaeological Science. Journal of Archaeological Science 56:242247.CrossRefGoogle Scholar
Kim, Sung-Min, and Choi, Yosoon 2017 Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data. International Journal of Environmental Research and Public Health 14:654.CrossRefGoogle ScholarPubMed
Kincey, Mark, Warburton, Jeff, and Brewer, Paul 2018 Contaminated Sediment Flux from Eroding Abandoned Historical Metal Mines: Spatial and Temporal Variability in Geomorphological Drivers. Geomorphology 319:199215.CrossRefGoogle Scholar
Lee, Hyeongyu, Choi, Yosoon, Suh, Jangwon, and Lee, Seung-Ho 2016 Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP–AES and Portable XRF Instruments: A Comparative Study. International Journal of Environmental Research and Public Health 13:384.CrossRefGoogle ScholarPubMed
Lubos, Carolin, Dreibrodt, Stefan, and Bahr, Andre 2016 Analysing Spatio-Temporal Patterns of Archaeological Soils and Sediments by Comparing pXRF and Different ICP-OES Extraction Methods. Journal of Archaeological Science: Reports 9:4453.CrossRefGoogle Scholar
Malainey, Mary E. 2011 A Consumer's Guide to Archaeological Science: Analytical Techniques. Manuals in Archaeological Method, Theory and Technique. Springer, New York.CrossRefGoogle Scholar
Merrill, Javier, Montenegro, Victor, Gazley, Michael F., and Voisin, Leandro 2018 The Effects of Pressure on X-Ray Fluorescence Analyses: pXRF under High Altitude Conditions. Journal of Analytical Atomic Spectrometry 33:792798.CrossRefGoogle Scholar
Robins, Nicholas A. 2011 Mercury, Mining, and Empire: The Human and Ecological Cost of Colonial Silver Mining in the Andes. Indiana University Press, Bloomington.Google Scholar
Robins, Nicholas A. 2017 Santa Bárbara's Legacy: An Environmental History of Huancavelica, Peru. Brill, Leiden, Netherlands.CrossRefGoogle Scholar
Rouillon, Marek, Taylor, Mark P., and Dong, Chenyin 2017 Reducing Risk and Increasing Confidence of Decision Making at a Lower Cost: In-Situ pXRF Assessment of Metal-Contaminated Sites. Environmental Pollution 229:780789.CrossRefGoogle Scholar
Schultze, Carol A. 2008 The Role of Silver Ore Reduction in Tiwanaku State Expansion into Puno Bay, Peru. University of California, Los Angeles.Google Scholar
Schultze, Carol A. 2013 Silver Mines of the Northern Lake Titicaca Basin. In Mining and Quarrying in the Ancient Andes: Sociopolitical, Economic, and Symbolic Dimensions, edited by Tripcevich, Nicholas and Vaughn, Kevin J., pp. 231251. Springer, New York.CrossRefGoogle Scholar
Scott, Jalen, Weindorf, David C., and Matthews, Elizabeth C. 2013 Lead Contamination in Schoolyard Soils. Soil Horizons 54(2):14.CrossRefGoogle Scholar
Scott, Rebecca B., Eekelers, Kim, and Degryse, Patrick 2016 Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-Ray Fluorescence Spectrometry. Applied Spectroscopy 70:94109.CrossRefGoogle ScholarPubMed
Shackley, M. Steven 2010 Is There Reliability and Validity in Portable X-Ray Fluorescence Spectrometry (PXRF)? SAA Archaeological Record 10(5):1720.Google Scholar
Shackley, M. Steven 2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by Shackley, M. Steven, pp. 744. Springer, New York.CrossRefGoogle Scholar
Smit, Douglas K. 2018 Mercury and the Making of the Andean Market: An Archaeological Study of Indigenous Labor in Colonial Peru. PhD dissertation, Department of Anthropology, University of Illinois, Chicago.Google Scholar
Speakman, Robert J., Little, Nicole C., Creel, Darrell, Miller, Myles R., and Iñañez, Javier G. 2011 Sourcing Ceramics with Portable XRF Spectrometers? A Comparison with INAA Using Mimbres Pottery from the American Southwest. Journal of Archaeological Science 38:34833496.CrossRefGoogle Scholar
Speakman, Robert J., and Steven Shackley, M. 2013 Silo Science and Portable XRF in Archaeology: A Response to Frahm. Journal of Archaeological Science 40:14351443.CrossRefGoogle Scholar
Suh, Janwon, Lee, Hyeongyu, and Choi, Yosoon 2016 A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS. International Journal of Environmental Research and Public Health 13:1191.CrossRefGoogle ScholarPubMed
Taylor, Mark Patrick, Mould, Simon Anthony, Kristensen, Louise Jane, and Rouillon, Marek 2014 Environmental Arsenic, Cadmium and Lead Dust Emissions from Metal Mine Operations: Implications for Environmental Management, Monitoring and Human Health. Environmental Research 135:296303.CrossRefGoogle ScholarPubMed
Tian, Kang, Huang, Biao, Xing, Zhe, and Hu, Wenyou 2018 In Situ Investigation of Heavy Metals at Trace Concentrations in Greenhouse Soils via Portable X-Ray Fluorescence Spectroscopy. Environmental Science and Pollution Research 25:1101111022.CrossRefGoogle ScholarPubMed
Urrutia-Goyes, R., Hernandez, N., Carrillo-Gamboa, O., Nigam, K. D. P., and Ornelas-Soto, N. 2018 Street Dust from a Heavily-Populated and Industrialized City: Evaluation of Spatial Distribution, Origins, Pollution, Ecological Risks and Human Health Repercussions. Ecotoxicology and Environmental Safety 159:198204.CrossRefGoogle ScholarPubMed
US ATSDR 2020 United States Agency for Toxic Substances and Disease Registry. Part of United States Department of Health and Human Resources. Electronic document, https://www.atsdr.cdc.gov/, accessed October, 2020.Google Scholar
US EPA 2020 United States Environmental Protection Agency. Regional Screening Level (RSL) Calculator. Electronic document, https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search, accessed October, 2020.Google Scholar