Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T23:50:29.282Z Has data issue: false hasContentIssue false

Beyond the Square Hole

Application of Structure from Motion Photogrammetry to Archaeological Excavation

Published online by Cambridge University Press:  07 March 2017

Charles W. Koenig
Affiliation:
Department of Anthropology, Texas State University, 601 University Drive San Marcos, Texas 78666 ([email protected])
Mark D. Willis
Affiliation:
Sacred Sites Research, Inc. 6220 Mojave Street NW, Albuquerque, New Mexico 87120
Stephen L. Black
Affiliation:
Department of Anthropology, Texas State University, 601 University Drive San Marcos, Texas 78666 ([email protected])

Abstract

The accurate and precise collection of three-dimensional (3D) context and provenience data is of critical importance for archaeologists. Traditional square-hole methods are being augmented by new digital techniques to increase the accuracy and precision with which 3D data are collected. Structure from Motion (SfM) photogrammetry is an emerging digital technique that is becoming more widespread for collecting 3D data of archaeological sites and features. We are using handheld digital cameras and ground-based SfM to record accurate and precise 3D context and provenience data at the scale of the excavation unit and profile during rockshelter excavations in the Lower Pecos Canyonlands of Texas. By combining SfM with traditional excavation methods, we collect 3D data on excavation units, layers, features, and profiles without excavating in grid-bound square units. SfM provides a straightforward and flexible method to excavate based on the stratigraphy and logistical pragmatics, which further aids in assigning precise context and provenience to recovered artifacts and samples. This article describes how ground-based SfM serves as a basic recording tool during excavation and shows that, by applying ground-based SfM methods to excavation, archaeologists can collect more, and more accurate, data than with traditional square-hole methods.

La colección exacta y precisa del contexto y de los datos de procedencia en tres dimensiones (3D) de objetos y rasgos es de importancia crítica para la arqueología. Los métodos tradicionales a base de unidades cuadradas están siendo aumentados por nuevas técnicas digitales que tienen el objetivo de mejorar la exactitud y la precisión con las que se recogen los datos en 3D. La fotogrametría de estructura a partir del movimiento (Structure from Motion; SfM) es una técnica digital emergente que está cada vez más generalizada para recoger datos en 3D de sitios y rasgos arqueológicos. Utilizamos cámaras digitales portátiles con SfM terrestre para registrar los datos en 3D exactos y precisos de contexto y procedencia a la escala de la unidad de excavación y del perfil durante las excavaciones de abrigos rocosos en los cañones del Lower Pecos, Texas. Mediante la combinación de SfM con los métodos de excavación tradicionales, recogemos los datos en 3D de unidades de excavación, capas, rasgos y perfiles sin excavar en unidades limitadas por una cuadricula tradicional. La SfM proporciona un método sencillo y flexible para excavar basado en la estratigrafía y las consideraciones prácticas, lo que ayuda aún más la asignación de contexto preciso y procedencia a los materiales culturales y muestras recuperados. En este artículo se describe como la SfM terrestre sirve como una herramienta básica de grabación durante la excavación, y como por medio de la aplicación de métodos de SfM terrestre a la excavación, los arqueólogos pueden recoger datos más abundantes, y más precisos, de lo que se puede recoger con los métodos tradicionales usando las unidades de excavación cuadradas.

Type
Articles
Copyright
Copyright 2017 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Agisoft LLC 2014 Agisoft Photoscan User Manual: Professional Edition, Version 1.1. Electronic document, http://www.agisoft.com/downloads/user-manuals/, accessed August 8, 2015.Google Scholar
Agisoft LLC 2015 Agisoft Photoscan Professional Edition, Version 1.1.6. Electronic document, http://www.agisoft.com/features/professional-edition/, accessed August 8, 2015.Google Scholar
Barsanti, S. Gonizzi, Remondino, F., and Visintini, D. 2013 3D Surveying and Modeling of Archaeological Sites—Some Critial Issues. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2:145150.CrossRefGoogle Scholar
Basham, G. Matt 2015 Subsistence Strategies and Landscape Use in the Canyon Edge Zone: Eagle Nest Canyon, Langtry, Texas. Unpublished Master's thesis, Department of Anthropology, Texas State University, San Marcos.Google Scholar
Bement, Leland C. 1986 Excavation of the Late Pleistocene Deposits of Bonfire Shelter, 41VV218, Val Verde County, Texas 1983–1984. Archeology Series 1. Texas Archeological Survey, University of Texas, Austin.Google Scholar
Black, Stephen L. 2013 The Archaeologists. In Painters in Prehistory: Archaeology and Art of the Lower Pecos Canyonlands, edited by Shafer, Harry J., pp. 139152. Trinity University Press, San Antonio.Google Scholar
Black, Stephen L., and Dering, J. Phil 2001 Lower Pecos Canyonlands. Electronic document, www.texasbeyondhistory.net/pecos, accessed August 8, 2015.Google Scholar
Boyd, Carolyn E. 2003 Rock Art of the Lower Pecos. Texas A&M University Press, College Station.Google Scholar
Boyd, Carolyn E. 2016 The White Shaman Mural: An Enduring Creation Narrative in the Rock Art of the Lower Pecos. University of Texas Press, Austin.Google Scholar
Boyd, Carolyn E., Marín, Francisco Marcos, Goodmaster, Christopher, Johnson, Angel, Castañeda, Amanda, and Dwyer, Benjamin 2012 Digital Documentation and the Archaeology of the Lower Pecos Canyonlands. Virtual Archaeology Review 3 (5):98103.CrossRefGoogle Scholar
Brown, David O, Camino, Byron, and Willis, Mark D. 2010 Algunas Observaciones a las Fortalezas Incas del Oeste montañoso del Ecuador. Instituto Nacional de Parrimonio Cultural: INPC – Revista del Patrimonio Cultural del Ecuador. INPC No. 2:43–56.Google Scholar
Brutto, M. Lo, and Meli, Paola 2012 Computer Vision Tools for 3D Modelling in Archaeology. International Journal of Heritage in the Digital Era 1:4356.CrossRefGoogle Scholar
Byerly, Ryan M., Cooper, Judith R., Meltzer, David J., Hill, Matthew E., and LaBelle, Jason M. 2007 A Further Assessment of Paleoindian Site-Use at Bonfire Shelter. American Antiquity 72:373381.CrossRefGoogle Scholar
Campbell, John 2012 Modeling Burned Rock Features as Units of Subsistence Intensification. Unpublished Master's thesis, Department of Anthropology, Texas State University, San Marcos.Google Scholar
Castañeda, Amanda M. 2015 The Hole Story: Understanding Ground Stone Bedrock Feature Variation in the Lower Pecos Canyonlands. Unpublished Master's thesis, Department of Anthropology, Texas State University, San Marcos.Google Scholar
Chandler, Jim H., and Fryer, J.G. 2005 Recording Aboriginal Rock Art Using Cheap Digital Cameras and Digital Photogrammetry. CIPA 2005 XX International Symposium 26. Torino, Italy.Google Scholar
Davenport, J. Walker 1938 Archaeological Exploration of Eagle Cave, Langtry, Texas. Big Bend Basket Maker Papers No. 4. Witte Memorial Museum, San Antonio, Texas.Google Scholar
De Reu, Jeroen, Plets, Gertjan, Verhoeven, Geert, De Smedt, Philippe, Bats, Machteld, Cherretté, Bart, De Maeyer, Wouter, Deconynck, Jasper, Herremans, Davy, Laloo, Pieter, Van Meirvenne, Marc, and De Clercq, Wim 2013 Towards a Three-Dimensional Cost-Effective Registration of the Archaeological Heritage. Journal of Archaeological Science 40:11081121.CrossRefGoogle Scholar
De Reu, Jeroen, De Smedt, Philippe, Herremans, Davy, Van Meirvenne, Marc, Laloo, Pieter, and De Clercq, Wim 2014 On Introducing an Image-Based 3D Reconstruction Method in Archaeological Excavation Practice. Journal of Archaeological Science 41:251262.CrossRefGoogle Scholar
Dering, J. Phil 2002 Amistad National Recreation Area: Archeological Survey and Cultural Resource Inventory. Intermountain Cultural Resources Management Anthropology Projects Professional Paper No. 68. Center for Ecological Archaeology, Texas A&M University, College Station, Texas.Google Scholar
Dibble, David S., and Lorrain, Dessamae 1968 Bonfire Shelter: A Stratified Bison Kill Site, Val Verde County, Texas. Miscellaneous Papers 1. Texas Memorial Museum Publications, University of Texas, Austin.Google Scholar
Drap, Pierre 2012 Underwater Photogrammetry for Archaeology. In Special Applications of Photogrammetry, edited by da Silva, Daniel Carneiro, pp. 111136. InTech, DOI: 10.5772/33999. Electronic document, http://www.intechopen.com/books/special-applications-of-photogrammetry/underwater-photogrammetry-for-archaeology, accessed August 8, 2015.Google Scholar
Douglass, Matthew, Lin, Sam, and Chodoronek, Michael 2015 The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features. Advances in Archaeological Practice 3 (2):136152.CrossRefGoogle Scholar
Farrand, William R. 2001 Sediments and Stratigraphy in Rockshelters and Caves: A Personal Perspective on Principles and Pragmatics. Geoarchaeology: An International Journal 16 (5):537557.CrossRefGoogle Scholar
Fulton, Carrie, Viduka, Andrew, Hutchinson, Andrew, Hollick, Joshua, Woods, Andrew, Sewell, David, and Manning, Sturt 2016 Use of Photogrammetry for Non-Disturbance Underwater Survey: An Analysis of In Situ Stone Anchors. Advances in Archaeological Practice 4 (1):1730.CrossRefGoogle Scholar
Furukawa, Yasutaka, and Ponce, Jean 2007 Accurate, Dense, and Robust Multi-View Stereopsis. In Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota.CrossRefGoogle Scholar
Goldberg, Paul, and Macphail, Richard I. 2006 Practical and Theoretical Geoarchaeology. Blackwell Publishing. Malden, Massachusetts.Google Scholar
Graves, Tim, Arias, Juan, and Willis, Mark 2013 Guadalupe Village (LA 143472), A Burned Rock Midden Site in Southeastern New Mexico and the Use of Innovative and Inexpensive Mapping Techniques. In Advances in Jornada Mogollon Archaeology: Papers from the 17th Jornada Mogollon Conference, edited by VanPool, Todd L., McCarthy, Elizabeth M., and Pool, Christine S. Van, pp. 1740. El Paso Museum of Archaeology, El Paso, Texas.Google Scholar
Green, Susie, Bavan, Andrew, and Shapland, Michael 2014 A Comparative Assessment of Structure from Motion Methods for Archaeological Research. Journal of Archaeological Science 46 (2014):173181.CrossRefGoogle Scholar
Harris, Edward C. 1989 Principles of Archaeological Stratigraphy. 2nd ed. Academic Press, London.Google Scholar
Houk, Brett A. (editor) 2013 The 2013 Season of the Chan Chich Archaeological Project. Papers of the Chan Chich Archaeological Project, Number 7. Department of Sociology, Anthropology, and Social Work. Texas Tech University, Lubbock.Google Scholar
Howland, Matthew D., Kuester, Falko, and Levy, Thomas E. 2014 Photogrammetry in the Field: Documenting, Recording, and Presenting Archaeology. Mediterranean Archaeology and Archaeometry 14 (4):101108.Google Scholar
Kelly, Robert L., and Thomas, David Hurst 2013 Archaeology. 6th ed. Wadsworth, Belmont, California.Google Scholar
Kenmotsu, Nancy A., Kemp, Leonard, and Loendorf, Lawrence L. 2012 Jornada Rockshelters as Special Places: Investigations of 13 Sites along the Otero Mesa Escarpment, Fort Bliss Military Reservation, Otero County, New Mexico. Historic and Natural Resources Reports Nos. 11–12 and 11–26, Environmental Division, Fort Bliss Garrison Command, Fort Bliss, Texas.Google Scholar
Kersten, Thomas P., and Linstaedt, Maren 2012 Image-Based Low-Cost Systems for Automatic 3D Recording and Modelling of Archaeological Finds and Objects. In EuroMed 2012, LNCS 7616, edited by Ioannidis, M. et al., pp. 110. Springer-Verlag, Berlin/Heidelberg, Germany.Google Scholar
Kim, Jinsoo, Lee, Seongkyu, Ahn, Hoyong, Seo, Dongju, Park, Soyoung, and Choi, Chuluong 2013 Feasibility of Employing a Smartphone as the Payload in a Photogrammetric UAV System. ISPRS Journal of Photogrammetry and Remote Sensing 79:118.CrossRefGoogle Scholar
Kjellman, Erik 2012 From 2D to 3D—A Photogrammetric Revolution in Archaeology? Unpublished Master's thesis, Department of Archaeology and Social Anthropology, University of Tromsø, Tromsø, Norway.Google Scholar
Koenig, Charles W. 2012 Burned Rock Middens, Settlement Patterns, and Bias in the Lower Pecos Canyonlands of Texas. Unpublished Master's thesis, Department of Anthropology, Texas State University, San Marcos.Google Scholar
Liebmann, Matt, Walker, Chester, and Sturm, Jennie 2013 Mapping Archaeological Sites Using an Unmanned Aerial Vehicle. NewsMAC 2013-1:8–10.Google Scholar
Lin, Albert Yu-Min, Novo, Alexandre, Har-Noy, Shay, Ricklin, Nathan D., and Stamatiou, Kostas 2011 Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4 (4):870876.CrossRefGoogle Scholar
Lowe, David G. 1999 Object Recognition from Local Scale-Invariant Features. Proceedings of the International Conference on Computer Vision 2:11501157.Google Scholar
McCarthy, John 2014 Multi-Image Photogrammetry as a Practical Tool for Cultural Heritage Survey and Community Engagement. Journal of Archaeological Science 43:175185.CrossRefGoogle Scholar
Manaugh, Geoff 2013 36-Gigapixel Image Captures Ancient Petroglyphs in Texas. Gizmodo. Electronic document, http://gizmodo.com/36-gigapixel-image-captures-ancient-petroglyphs-in-texa-1410698528, accessed August 8, 2015.Google Scholar
Miller, Myles R., Loendorf, Lawrence L., and Kemp, Leonard 2012 Picture Cave and Other Rock Art Sites on Fort Bliss. Historic and Natural Resources Report No. 13-36, Environmental Division, Fort Bliss Garrison Command, Fort Bliss, Texas.Google Scholar
Miller, Myles R., and Graves, Tim B. 2009 Madera Quemada Pueblo: Archaeological Investigations at a 14th Century Jornada Mogollon Pueblo. Historic and Natural Resources Report No. 03-12, Environmental Division, Fort Bliss Garrison Command, Fort Bliss, Texas.Google Scholar
Pollefeys, Marc, and van Gool, Luc 2002 Visual Modelling: From Images to Images. Journal of Visualization and Computer Animation 13:199209.CrossRefGoogle Scholar
Pollefeys, Marc, Koch, Reinhard, Vergauwen, Maarten, and van Gool, Luc 1998 Virtualizing Archaeological Sites. In Proceedings of the 4th International Conference on Virtual Systems and Multimedia (VSMM) 98:600605.Google Scholar
Pollefeys, Marc, van Gool, Luc, Vergauwen, Maarten, Cornelis, Kurt, Verbiest, Frank, and Tops, Jan 2001 Image-Based 3D Acquisition of Archaeological Heritage and Applications. In Proceedings of the 2001 Conference on Virtual Reality, Archaeology, and Cultural Heritage, pp. 255–262.CrossRefGoogle Scholar
Porter, Samantha Thi, Roussel, Morgan, and Soressi, Marie 2016 A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field: Lithic Examples from the Early Upper Paleolithic Sequence of Les Cottés. Advances in Archaeological Practice 4 (1):7186.CrossRefGoogle Scholar
Prewitt, Elton R. 2007 To Jump or to Drag: Reflections on Bonfire Shelter. Bulletin of the Texas Archeological Society 78:149158.Google Scholar
Reinhard, Jochen 2012 Things on Strings and Complex Computer Algorithms: Kite Aerial Photography and Structure from Motion Photogrammetry at the Tulul adh-Dhahab, Jordan. AARGnews: The Newsletter of the Aerial Archaeology Research Group 45:3741.Google Scholar
Roberts, Tim, and Alvarado, Luis 2011 Terminal Archaic/Late Prehistoric Cooking Technology in the Lower Pecos: Excavation of the Lost Midden Site (41VV1991), Seminole Canyon State Park and Historic Site, Val Verde County, Texas. Texas Antiquities Permit No. 4868. Texas Parks and Wildlife Department Cultural Resources Program, Austin, Texas.Google Scholar
Rodriguez, Daniel P. 2015 Patterns in the Use of the Rockshelters of Eagle Nest Canyon, Langtry, Texas. Unpublished Master's thesis, Department of Anthropology, Texas State University, San Marcos.Google Scholar
Ross, Richard E. 1965 The Archaeology of Eagle Cave. Papers of the Texas Archeological Salvage Project No. 7. University of Texas, Austin.Google Scholar
Rua, Helena, and Alvito, Pedro 2011 Living the Past: 3D Models, Virtual Reality and Game Engines as Tools for Supporting Archaeology and the Reconstruction of Cultural Heritage—The Case Study of the Roman Villa of Casal de Freiria. Journal of Archaeological Science 38:32963308.CrossRefGoogle Scholar
Sayles, E. B. 1935 An Archaeological Survey of Texas. Gila Pueblo. Globe, Arizona.Google Scholar
Shafer, Harry J. (editor) 1986 Ancient Texans. Texas Monthly Press, Austin.Google Scholar
Shafer, Harry J. (editor) 2013 Painters in Prehistory: Archaeology and Art of the Lower Pecos Canyonlands. Trinity University Press, San Antonio, Texas.Google Scholar
Turpin, Solveig A. 1991 Time Out of Mind: The Radiocarbon Chronology of the Lower Pecos River Region. In Papers on Lower Pecos Prehistory, edited by Turpin, Solveig A., pp. 149. Studies in Archeology 8, Texas Archeological Research Laboratory, University of Texas, Austin.Google Scholar
Turpin, Solveig A. 1995 The Lower Pecos River Region of Texas and Northern Mexico. Bulletin of the Texas Archeological Society 66:541560.Google Scholar
Turpin, Solveig A. 2004 The Lower Pecos River Region of Texas and Northern Mexico. In The Prehistory of Texas, edited by Perttula, Timothy K., pp. 266280. Texas A&M University Press, College Station.Google Scholar
Verhoeven, Geert 2009 Providing an Archaeological Bird's-Eye View—An Overall Picture of Ground-based Means to Execute Low-Altitude Aerial Photography (LAAP) in Archaeology. Archaeological Prospection 16:233249.CrossRefGoogle Scholar
Verhoeven, Geert 2011 Software Review: Taking Computer Vision Aloft—Archaeological Three-dimensional Reconstructions from Aerial Photographs with PhotoScan. Archaeological Prospection 18:6773.CrossRefGoogle Scholar
Verhoeven, G., Doneus, M., Briese, Ch., and Vermeulen, F. 2012 Mapping by Matching: A Computer Vision-Based Approach to Fast and Accurate Georeferencing of Archaeological Aerial Photographs. Journal of Archaeological Science 39:20602070.CrossRefGoogle Scholar
Willis, Mark D. 2010 How to Create a Digital Elevation Model from Photosynth Point Clouds. Markaeology. Electronic document, http://palentier.blogspot.com/2010/12/how-to-create-digital-elevation-model.html, accessed August 8, 2015.Google Scholar
Willis, Mark D. 2013 Drone Mapping the Pyramids of Zuleta. Markeology. Electronic document, http://palentier.blogspot.com/2013/10/drone-mapping-pyramids-of-zuleta.html, accessed August 8, 2015.Google Scholar
Willis, Mark D., and Jalandoni, Andrea 2011 The Pictographs of the Rock Islands of Koror, Palau: Advanced Enhancement and 3D Modeling at Five Sites for UNESCO. Unpublished report submitted to Ministry of Community & Cultural Affairs of Palau.Google Scholar
Willis, Mark D., Koenig, Charles W., Castañeda, Amanda M., and Black, Stephen L. 2016 Archaeological 3D Mapping: The Structure from Motion Revolution. Journal of Texas Archeology and History 3:136.Google Scholar