Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:15:21.812Z Has data issue: false hasContentIssue false

Using Porcelain Replicas for Precision Control in Flintknapping Experiments

Published online by Cambridge University Press:  04 December 2017

Charles A. Speer*
Affiliation:
Department of Anthropology, Idaho State University, 921 South 8th Avenue, Pocatello, ID 83209–8005, USA ([email protected])

Abstract

The experimental replication of lithic artifacts occasionally encounters issues of standardization and control. Two major issues are how to accurately create a large sample population and how to sample from specific stages over the flaking process. Knappable stone is unpredictable due to inclusions, cracks, and differences in size, texture, and fracture toughness. While this aspect of stone is critical to understanding some aspects of human behavior, decision-making, and skill assessment, in some experimental studies it may hinder other areas. Research for a large study assessing the failure of Folsom preforms during the fluting stage required many knappable facsimiles. The process outlined here uses porcelain as a medium for tackling these requirements. The new method presented here illustrates how a 3-D scanner and printer can be used to record and produce a copy of the artifact form. It then describes how to create a plaster mold of the printed artifact form and, finally, how to cast and fire the artifact replica in porcelain.

La replicación experimental de artefactos líticos ocasionalmente encuentra problemas de estandarización y control. Dos cuestiones importantes son cómo crear con precisión una gran población de muestra y cómo muestrear de etapas específicas sobre el proceso de descamación. Knappable piedra es impredecible debido a inclusiones, grietas y diferencias en tamaño, textura y tenacidad a la fractura. Si bien este aspecto de la piedra es fundamental para comprender algunos aspectos del comportamiento humano, la toma de decisiones y la evaluación de habilidades en algunos estudios experimentales, puede obstaculizar otras áreas. La investigación para un gran estudio que evaluó el fracaso de las preformas de Folsom durante la etapa de estría requirió muchos facsímiles knappable. El proceso descrito aquí utiliza la porcelana como medio para abordar estos requisitos. El nuevo método presentado aquí ilustra cómo se puede utilizar un escáner 3D e impresora para grabar y producir una copia del formulario del artefacto. A continuación, se describe cómo crear un molde de yeso de la forma de artefacto impreso, y luego, por último, cómo arrojar y disparar la réplica de artefacto en porcelana.

Type
How to Series
Copyright
Copyright 2017 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Andrefsky, W. Jr. 2005 Lithics: Macroscopic Approaches to Analysis. Cambridge: Manuals in Archaeology. Cambridge University Press, Cambridge.Google Scholar
Bamforth, D. B. 2006 The Windy Ridge Quartzite Quarry: Hunter-Gatherer Mining and Hunter-Gatherer Land Use on the North American Continental Divide. World Archaeology 38 (3):511527.Google Scholar
Bello, Silvia M., Parfitt, Simon A., De Groote, Isabelle, and Kennaway, Gabrielle 2013 Investigating Experimental Knapping Damage on an Antler Hammer: A Pilot-Study Using High-Resolution Imaging and Analytical Techniques. Journal of Archaeological Science 40:45284537.CrossRefGoogle Scholar
Bernard, H. Russell 2006 Research Methods in Anthropology: Qualitative and Quantitative Approaches. 4th ed. AltaMira Press, Lanham, Maryland.Google Scholar
Bradley, Bruce A., Collins, Michael B., Hemmings, Andrew, Shoberg, Marilyn, and Lohse, Jon C. 2010 Clovis Technology. Archaeological Series. International Monographs in Prehistory, Ann Arbor, Michigan.Google Scholar
Bragança, S. R., and Bergmann, C. P. 2003 A View of Whitewares Mechanical Strength and Microstructure. Ceramics International 29 (7):801806.CrossRefGoogle Scholar
Carty, William M., and Senapati, Udayan 1998 Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. Journal of the American Ceramic Society 81:320.Google Scholar
Dibble, Harold L., and Rezek, Zeljko 2009 Introducing a New Experimental Design for Controlled Studies of Flake Formation: Results for Exterior Platform Angle, Platform Depth, Angle of Blow, Velocity and Force. Journal of Archaeological Science 36:19451954.CrossRefGoogle Scholar
Etchieson, M., and Trubitt, M. B. 2013 Taking It to the River: Arkansas Novaculite Quarrying and Archaic Period Tool Production. North American Archaeologist 34 (4):387407.CrossRefGoogle Scholar
Fredlund, Dale E. 1976 Fort Union Porcellanite and Fused Glass: Distinctive Lithic Materials of Coal Burn Origin on the Northern Plains. Plains Anthropologist 21 (73):207211.Google Scholar
Gerber, Alan S., and Green, Donald P. 2012 Field Experiments: Design, Analysis, and Interpretation. W. W. Norton, New York.Google Scholar
Harrison, Rodney 2006 An Artefact of Colonial Desire? Kimberley Points and the Technologies of Enchantment. Current Anthropology 47 (1):6388.Google Scholar
Khreisheh, Nada N., Davies, Danielle, and Bradley, Bruce A. 2013 Extending Experimental Control: The Use of Porcelain in Flaked Stone Experimentation. Advances in Archaeological Practice 1 (1): 3746.Google Scholar
Klaus, Hinkelmann, and Kempthorne, Oscar 1993 Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design. 2nd ed. Wiley Series in Probability and Statistics 1. 3 vols. John Wiley and Sons, Hoboken, New Jersey.Google Scholar
Luedtke, Barbara E., and Meyers, J. T. 1992 An Archaeologist's Guide to Chert and Flint. Archaeological Research Tools 7. Institute of Archaeology, University of California, Los Angeles.Google Scholar
Marsh, Erik J., and Ferguson, Jeffrey R. 2010 Introduction. In Designing Experimental Research in Archaeology: Examining Technology through Production and Use, edited by Ferguson, J. R., pp. 112. University Press of Colorado, Boulder.Google Scholar
Morgenstein, Maury 2006 Geochemical and Petrographic Approaches to Chert Tool Provenance Studies; Evidence from Two Western USA Holocene Archaeological Sites. Geological Society Special Publications 257:307321.Google Scholar
Rezek, Zeljko, Lin, Sam C., Iovita, Radu, and Dibble, Harold L. 2011 The Relative Effects of Core Surface Morphology on Flake Shape and Other Attributes. Journal of Archaeological Science 38 (6):13461359.Google Scholar
Saul, John M. 1969 Study of the Spanish Diggings, Aboriginal Flint Quarries of Southeastern Wyoming. National Geographic Society Research Reports 1964:183199.Google Scholar
Speer, Charles A. 2010 Understanding the Effects of Heat Treatment on Edwards Plateau Chert. Ethnoarchaeology 2 (2):153172.Google Scholar
Tsirk, Are 2014 Fractures in Knapping. Archaeopress, Oxford.Google Scholar
Whittaker, John C. 1994 Flintknapping: Making and Understanding Stone Tools. University of Texas Press, Austin.Google Scholar
Wood, Michael M., and Weidlich, J. E. 1982 Empirical Evaluation of Fracture Toughness: The Toughness of Quartz. American Mineralogist 67:10651068.Google Scholar