Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T02:34:42.975Z Has data issue: false hasContentIssue false

Shorelines in the Desert: Mapping Fish Trap Features along the Southwest Coast of Ancient Lake Cahuilla, California

Published online by Cambridge University Press:  11 September 2019

Anjali Phukan
Affiliation:
Department of Anthropology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
Todd J. Braje*
Affiliation:
Department of Anthropology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
Thomas K. Rockwell
Affiliation:
Department of Geology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
Isaac Ullah
Affiliation:
Department of Anthropology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
*
([email protected], corresponding author)

Abstract

In the desert of southeastern California, the geological and archaeological remnants of a once massive lake, Lake Cahuilla, are still visible. One of the most distinctive features marking Lake Cahuilla's relic shorelines is a series of rock fish trap features that, in some cases, stretch across thousands of square meters. These fish traps are severely understudied, and systematic archaeological survey can help scientists reconstruct the dynamic human-environmental history of the region. The large number of fish traps along with the rocky desert terrain, however, make traditional pedestrian archaeological surveys both difficult and inefficient. We used unmanned aerial vehicle (UAV) technology along with traditional archaeological methods to conduct surveys and identify patterning in the shapes, orientations, and frequencies of fish traps. Our study demonstrates the potential of emerging archaeological field technology to better understand the nature of human-environmental ecodynamics through time and space.

En el desierto del sureste de California, los restos geológicos y arqueológicos de un lago una vez masivo que se llama Cahuilla aún son visibles. Una de las características más distintivas de las paleo-orillas del lago Cahuilla es una serie de trampas para peces que, en algunos casos, se extienden a lo largo de miles de metros cuadrados. Estas trampas para peces apenas han sido estudiadas. Su estudio arqueológico sistemático puede ayudar a los científicos a reconstruir la dinámica historia humana y ambiental de la región. Sin embargo, la gran cantidad de trampas y el complicado terreno rocoso del desierto hace que los estudios arqueológicos tradicionales a pie sean difíciles e ineficientes. Este estudio utiliza tecnología de vehículo aéreo no tripulado (UAV) junto con métodos arqueológicos tradicionales para identificar y analizar patrones en las formas, orientaciones y frecuencias de las trampas para peces. Nuestro estudio demuestra el potencial de esta tecnología emergente para mejorar la comprensión de la naturaleza de la ecodinámica humano-ambiental a través del tiempo y espacio.

Type
Articles
Copyright
Copyright 2019 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Bean, Lowell J. 1991 The Cahuilla Landscape: The Santa Rosa and San Jacinto Mountains. Anthropological Papers 37. Ballena Press, Menlo Park, California.Google Scholar
Campana, Stefano 2017 Drones in Archaeology: State-of-the-Art and Future Perspectives. Archaeological Prospection 24:275296.Google Scholar
Connaway, John M. 2007 Fishweirs: A World Perspective with Emphasis on the Fishweirs of Mississippi. Archaeological Reports 33. Mississippi Department of Archives and History, Jackson.Google Scholar
Gabriel, Otto, Lange, Klaus, Dahm, Erdmann, and Wendt, Thomas (editors) 1964 Fish Catching Methods of the World. Blackwell, Oxford.Google Scholar
Gifford, E. W. 1931 The Kamia of Imperial Valley. Bureau of American Ethnology Bulletin 97:194.Google Scholar
Gobalet, Ken W., and Wake, Thomas A. 2000 Archaeological and Paleontological Fish Remains from the Salton Basin, Southern California. Southwestern Naturalist 45:514520.Google Scholar
GRASS Development Team 2017 Geographic Resources Analysis Support System (GRASS) Software, Version 7.2. Open Source Geospatial Foundation, http://grass.osgeo.org.Google Scholar
Green, Susie, Bevan, Andrew, and Shapland, Michael 2014 A Comparative Assessment of Structure from Motion Methods for Archaeological Research. Journal of Archaeological Science 46:173181.Google Scholar
James, Michael R., and Robson, Stuart 2012 Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. Journal of Geophysical Research: Earth Surface 117(F3):F03017.Google Scholar
Langouët, Loïc, and Daire, Marie-Yvane 2009 Ancient Maritime Fish-Traps of Brittany (France): A Reappraisal of the Relationship between Human and Coastal Environment during the Holocene. Journal of Maritime Archaeology 4:131148.Google Scholar
Laylander, Don 1997 The Last Days of Lake Cahuilla: The Elmore Site. Pacific Coast Archaeological Society Quarterly 33:1138.Google Scholar
Laylander, Don 2006 Regional Consequences of Lake Cahuilla. San Diego State University Occasional Archaeological Papers 1:5977.Google Scholar
Love, Bruce, and Dahdul, Mariam 2002 Desert Chronologies and the Archaic Period in the Coachella Valley. Pacific Coast Archaeological Society Quarterly 38:6686.Google Scholar
Mitasova, Helena, and Neteler, Markus 2004 GRASS as Open Source Free Software GIS: Accomplishments and Perspectives. Transactions in GIS 8:145154.Google Scholar
Mueller, Gordon A., and Marsh, Paul C. 2002 Lost, a Desert River and Its Native Fishes: A Historical Perspective of the Lower Colorado River. US Geological Survey, Fort Collins, Colorado.Google Scholar
Oglesby, Larry C. 2005 The Salton Sea: Geology, History, Potential Problems, Politics, and Possible Futures of an Unnatural Desert Salt Lake. Memoirs 10. Southern California Academy of Sciences, San Francisco.Google Scholar
Pallette, Drew, and Schaefer, Jerry 1995 Archaeological Investigations of Two Lake Cahuilla Associated Rockshelters in the Toro Canyon Area, Riverside County, California. Proceedings of the Society for California Archaeology 8:105122.Google Scholar
Papoulias, Diana, and Minckley, Wendell L. 1990 Food Limited Survival of Larval Razorback Sucker, Xyrauchen texanus, in the Laboratory. Environmental Biology of Fishes 29:7378.Google Scholar
Philibosian, Belle, Fumal, Thomas, and Weldon, Ray 2011 San Andreas Fault Earthquake Chronology and Lake Cahuilla History at Coachella, California. Bulletin of the Seismological Society of America 101:1338.Google Scholar
Pritzker, Barry M. 2000 A Native American Encyclopedia: History, Culture, and Peoples. Oxford University Press, Oxford.Google Scholar
QGIS Development Team 2017 Geographic Resources Analysis Support System, https://www.qgis.org.Google Scholar
Quinn, Patrick S., and Burton, Margie M. 2016 Ceramic Distribution, Migration, and Cultural Interaction among Late Prehistoric (ca. 1300–200 B.P.) Hunter-Gatherers in the San Diego Region, Southern California. Journal of Archaeological Science: Reports 5:285295.Google Scholar
Roberts, Amy, Mollenmans, Adrian, Agius, Quenten, Graham, Fred, Newchurch, Jeffrey, Rigney, Lester-Irabinna, Sansbury, Fred, Sansbury, Lindsay, Turner, Peter, Wanganeen, Greg, and Wanganeen, Klynton 2016 “They Planned Their Calendar . . . They Set Up Ready for What They Wanted to Feed the Tribe”: A First-Stage Analysis of Narungga Fish Traps on Yorke Peninsula, South Australia. Journal of Island and Coastal Archaeology 11:125.Google Scholar
Rockwell, Thomas K., Meltzner, Aron, and Haaker, Erik C. 2018 Dates of the Two Most Recent Ruptures on the Southernmost San Andreas Fault Recalculated by Precise Dating of Lake Cahuilla Dry Periods. Bulletin of the Seismological Society of America 108(5A):26342649.Google Scholar
Schaefer, Jerry 1994 The Challenge of Archaeological Research in the Colorado Desert: Recent Approaches and Discoveries. Journal of California and Great Basin Anthropology 16:6080.Google Scholar
Schaefer, Jerry, and Laylander, Don 2010 The Colorado Desert: Ancient Adaptations to Wetlands and Wastelands. In California Prehistory: Colonization, Culture, and Complexity, edited by Jones, Terry L. and Klar, Kathryn. A., pp. 247258. AltaMira Press, Lanham, Maryland.Google Scholar
Siebert, Sebastian, and Teizer, Jochen 2014 Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Automation in Construction 41:114.Google Scholar
Smith, Brenda D., and Brock, James 1999 From Shoreline to Mesquite Dune: Changing Subsistence Strategies at CA-RIV-4754, La Quinta. Proceedings of the Society for California Archaeology 12:1–5.Google Scholar
Sutton, Mark Q. 1993 Midden and Coprolite Derived Subsistence Evidence: An Analysis of Data from the La Quinta Site, Salton Basin, California. Journal of Ethnobiology 13:115.Google Scholar
Sutton, Mark Q. 1998 Cluster Analysis of Paleofecal Data Sets: A Test of Late Prehistoric Settlement and Subsistence Patterns in the Northern Coachella Valley, California. American Antiquity 63:86107.Google Scholar
Sutton, Mark Q. 2011 The Palomar Tradition and Its Place in the Prehistory of Southern California. Pacific Coast Archaeological Society Quarterly 44:174.Google Scholar
Treganza, Adan E. 1945 The “Ancient Stone Fish Traps” of the Coachella Valley, Southern California. American Antiquity 10:285294.Google Scholar
Waters, Michael R. 1983 Late Holocene Lacustrine Chronology and Archaeology of Ancient Lake Cahuilla, California. Quaternary Research 19:373387.Google Scholar
White, Eric S., and Roth, Barbara J. 2009 Fish Traps on Ancient Shores: Exploring the Function of Lake Cahuilla Fish Traps. Journal of California and Great Basin Anthropology 29:183194.Google Scholar
Wilke, Philip J. 1978 Late Prehistoric Human Ecology at Lake Cahuilla, Coachella Valley, California. Contributions No. 38. University of California Archaeological Research Facility, Berkeley.Google Scholar