Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T15:33:22.706Z Has data issue: false hasContentIssue false

Variance-Optimal Hedging in General Affine Stochastic Volatility Models

Published online by Cambridge University Press:  01 July 2016

Jan Kallsen*
Affiliation:
Christian-Albrechts-Universität zu Kiel
Arnd Pauwels*
Affiliation:
MEAG AssetManagement GmbH
*
Postal address: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24098 Kiel, Germany. Email address: [email protected]
∗∗ Postal address: MEAG AssetManagement GmbH, Abteilung Risikocontrolling, Oskar-von-Miller-Ring 18, 80333 München, Germany. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider variance-optimal hedging in general continuous-time affine stochastic volatility models. The optimal hedge and the associated hedging error are determined semiexplicitly in the case that the stock price follows a martingale. The integral representation of the solution opens the door to efficient numerical computation. The setup includes models with jumps in the stock price and in the activity process. It also allows for correlation between volatility and stock price movements. Concrete parametric models will be illustrated in a forthcoming paper.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2010 

References

Arai, T. (2005). An extension of mean-variance hedging to the discontinuous case. Finance Stoch. 9, 129139.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Statist. Soc. B 63, 167241.CrossRefGoogle Scholar
Becherer, D. (2006). Bounded solutions to backward SDE's with Jumps for utility optimization and indifference hedging. Ann. Appl. Prob. 16, 20272054.CrossRefGoogle Scholar
Benth, F. E. et al. (2003). Explicit representation of the minimal variance portfolio in markets driven by Lévy processes. Math. Finance 13, 5572.CrossRefGoogle Scholar
Bouleau, N. and Lamberton, D. (1989). Residual risks and hedging strategies in Markovian markets. Stoch. Process. Appl. 33, 131150.CrossRefGoogle Scholar
Carr, P. and Madan, D. B. (1999). Option valuation using the fast Fourier transform. J. Comput. Finance 2, 6173.CrossRefGoogle Scholar
Carr, P., Geman, H., Madan, D. B. and Yor, M. (2003). Stochastic volatility for Lévy processes. Math. Finance 13, 345382.CrossRefGoogle Scholar
Černý, A. and Kallsen, J. (2007). On the structure of general mean-variance hedging strategies. Ann. Prob. 35, 14791531.CrossRefGoogle Scholar
Cont, R., Tankov, P. and Voltchkova, E. (2007). Hedging with options in models with Jumps. In Stochastic Analysis and Applications (Abel Symp. 2), eds Benth, F. et al., Springer, Berlin, pp. 197217.CrossRefGoogle Scholar
Duffie, D., Filipovic, D. and Schachermayer, W. (2003). Affine processes and applications in finance. Ann. Appl. Prob. 13, 9841053.CrossRefGoogle Scholar
Föllmer, H. and Sondermann, D. (1986). Hedging of nonredundant contingent claims. In Contributions to Mathematical Economics, eds Hildenbrand, W. and Mas-Colell, A., North-Holland, Amsterdam, pp. 205223.Google Scholar
Goll, T. and Kallsen, J. (2000). Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89, 3148.CrossRefGoogle Scholar
Heath, D., Platen, E. and Schweizer, M. (2001). A comparison of two quadratic approaches to hedging in incomplete markets. Math. Finance 11, 385413.CrossRefGoogle Scholar
Heston, S. (1993). A closed-form solution for options with stochastic volatilities with applications to bond and currency options. Rev. Financial Studies 6, 327343.CrossRefGoogle Scholar
Hubalek, F. and Sgarra, C. (2007). Quadratic hedging for the Bates model. Internat. J. Theoret. Appl. Finance 10, 873885.CrossRefGoogle Scholar
Hubalek, F., Kallsen, J. and Krawczyk, L. (2006). Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Prob. 16, 853885.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Kallsen, J. (2006). A didactic note on affine stochastic volatility models. In From Stochastic Calculus to Mathematical Finance, eds Kabanov, Yu., Liptser, R. and Stoyanov, J., Springer, Berlin, pp. 343368.CrossRefGoogle Scholar
Kallsen, J. (2009). Option pricing. In Handbook of Financial Time Series, eds Andersen, T. et al., Springer, Berlin, pp. 599613.CrossRefGoogle Scholar
Kallsen, J. and Pauwels, A. (2009). Variance-optimal hedging for time-changed Lévy processes. To appear in Appl. Math. Finance.Google Scholar
Kallsen, J. and Rheinländer, T. (2008). Asymptotic utility-based pricing and hedging for exponential utility. Preprint.Google Scholar
Kallsen, J. and Shiryaev, A. N. (2003). Time change representation of stochastic integrals. Theory Prob. Appl. 46, 522528.CrossRefGoogle Scholar
Kallsen, J. and Vierthauer, R. (2009). Quadratic hedging in affine stochastic volatility models. Rev. Derivatives Res. 12, 327.CrossRefGoogle Scholar
Kramkov, D. and Sîrbu, M. (2006). Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Prob. 16, 21402194.CrossRefGoogle Scholar
Kramkov, D. and Sîrbu, M. (2007). Asymptotic analysis of utility-based hedging strategies for small number of contingent claims. Stoch. Process. Appl. 117, 16061620.CrossRefGoogle Scholar
Mania, M. and Schweizer, M. (2005). Dynamic exponential utility indifference valuation. Ann. Appl. Prob. 15, 21132143.CrossRefGoogle Scholar
Monat, P. and Stricker, C. (1995). Föllmer–Schweizer decomposition and mean-variance hedging for general claims. Ann. Prob. 23, 605628.CrossRefGoogle Scholar
Pauwels, A. (2007). Varianz-optimales hedging in affinen volatilitätsmodellen. , TU München.Google Scholar
Pham, H. (2000). On quadratic hedging in continuous time. Math. Meth. Operat. Res. 51, 315339.CrossRefGoogle Scholar
Protter, P. E. (1992). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.Google Scholar
Raible, S. (2000). Lévy processes in finance: theory, numerics, and empirical facts. , Universität Freiburg.Google Scholar
Rudin, W. (1987). Real and Complex Analysis, 3rd edn. McGraw-Hill, New York.Google Scholar
Schoutens, W. (2003). Lévy Processes in Finance. John Wiley, New York.CrossRefGoogle Scholar
Schweizer, M. (1994). Approximating random variables by stochastic integrals. Ann. Prob. 22, 15361575.CrossRefGoogle Scholar
Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In Option Pricing, Interest Rates and Risk Management, eds Jouini, E., Cvitanic, J. and Musiela, M., Cambridge University Press, pp. 538574.CrossRefGoogle Scholar
Walter, W. (1998). Ordinary Differential Equations. Springer, New York.CrossRefGoogle Scholar