Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T03:39:48.487Z Has data issue: false hasContentIssue false

Variance prediction for pseudosystematic sampling on the sphere

Published online by Cambridge University Press:  01 July 2016

Ximo Gual-Arnau*
Affiliation:
Universitat Jaume I, Castellón
Luis M. Cruz-Orive*
Affiliation:
Universidad de Cantabria
*
Postal address: Departament de Matemàtiques, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain.
∗∗ Postal address: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Avenida Los Castros s/n, E-39005 Santander, Spain. Email address: [email protected]

Abstract

Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by the Ministerio de Ciencia y Tecnologia (Spain) I+D project BSA2001-0803-C02.

References

[1] Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover, New York.Google Scholar
[2] Cressie, N. A. C. (1991). Statistics for Spatial Data. John Wiley, New York.Google Scholar
[3] Cruz-Orive, L. M. (1989). On the precision of systematic sampling: a review of Matheron's transitive methods. J. Microscopy 153, 315333.CrossRefGoogle Scholar
[4] Foley, A., Lane, D. A., Nielson, G. M., Franke, R. and Hagen, H. (1990). Interpolation of scattered data on closed surfaces. Comput. Aided Geometric Design 7, 303312.CrossRefGoogle Scholar
[5] García-Fiñana, M. and Cruz-Orive, L. M. (2000). New approximations for the efficiency of Cavalieri sampling. J. Microscopy 199, 224238.CrossRefGoogle Scholar
[6] Gual-Arnau, X. and Cruz-Orive, L. M. (2000). Systematic sampling on the circle and on the sphere. Adv. Appl. Prob. 32, 628647.CrossRefGoogle Scholar
[7] Gundersen, H. J. G. (1988). The nucleator. J. Microscopy 151, 321.CrossRefGoogle ScholarPubMed
[8] Jensen, E. B. V. (1998). Local Stereology. World Scientific, Singapore.CrossRefGoogle Scholar
[9] Kiêu, K., Souchet, S. and Istas, J. (1999). Precision of systematic sampling and transitive methods. J. Statist. Planning Infer. 77, 263279.CrossRefGoogle Scholar
[10] Lockwood, E. H. and Macmillan, R. H. (1978). Geometric Symmetry. Cambridge University Press.Google Scholar
[11] Matheron, G. (1971). The Theory of Regionalized Variables and Its Applications (Cahiers Centre Morphologie Math. 5). École des Mines de Paris, Fontainebleau.Google Scholar
[12] Riordan, J. (1968). Combinatorial Identities. John Wiley, New York.Google Scholar
[13] Schlather, M. (1999). An introduction to positive definite functions and to unconditional simulation of random fields. Tech. Rep. ST 99–10, Lancaster University.Google Scholar
[14] Tandrup, T. (1993). A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion. J. Comparative Neurol. 329, 269276.CrossRefGoogle ScholarPubMed