Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:53:19.689Z Has data issue: false hasContentIssue false

Subgeometric rates of convergence for Markov processes under subordination

Published online by Cambridge University Press:  17 March 2017

Chang-Song Deng*
Affiliation:
Wuhan University
René L. Schilling*
Affiliation:
TU Dresden
Yan-Hong Song*
Affiliation:
Zhongnan University of Economics and Law
*
* Postal address: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China. Email address: [email protected]
** Postal address: Fachrichtung Mathematik, Institut für Mathematische Stochastik, TU Dresden, 01062 Dresden, Germany. Email address: [email protected]
*** Postal address: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China. Email address: [email protected]

Abstract

We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bogdan, K.,Stós, A. and Sztonyk, P. (2003).Harnack inequality for stable processes on d-sets.Studia Math. 158,163198.CrossRefGoogle Scholar
[2] Böttcher, B.,Schilling, R. L. and Wang, J. (2011).Constructions of coupling processes for Lévy processes.Stoch. Process. Appl. 121,12011216.Google Scholar
[3] Böttcher, B.,Schilling, R. and Wang, J. (2014).Lévy Matters III(Lecture Notes Math. 2099)Springer,Cham.Google Scholar
[4] Butkovsky, O. (2014).Subgeometric rates of convergence of Markov processes in the Wasserstein metric.Ann. Appl. Prob. 24,526552.Google Scholar
[5] Chen, M.-F. (2004).From Markov Chains to Non-Equilibrium Particle Systems,2nd edn.Word Scientific,River Edge, NJ.Google Scholar
[6] Chen, M.-F. (2005).Eigenvalues, Inequalities, and Ergodic Theory.Springer,London.Google Scholar
[7] Deng, C.-S. (2014).Harnack inequalities for SDEs driven by subordinate Brownian motions.J. Math. Anal. Appl. 417,970978.Google Scholar
[8] Deng, C.-S. and Schilling, R. L. (2015).On a Cameron‒Martin type quasi-invariance theorem and applications to subordinate Brownian motion.Stoch. Anal. Appl. 33,975993.Google Scholar
[9] Deng, C.-S. and Schilling, R. L. (2015).On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes.Stoch. Process. Appl. 125,38513878.Google Scholar
[10] Douc, R.,Fort, G. and Guillin, A. (2009).Subgeometric rates of convergence of f-ergodic strong Markov processes.Stoch. Process. Appl. 119,897923.Google Scholar
[11] Douc, R.,Moulines, E. and Soulier, P. (2007).Computable convergence rates for sub-geometric ergodic Markov chains.Bernoulli 13,831848.Google Scholar
[12] Douc, R.,Fort, G.,Moulines, E. and Soulier, P. (2004).Practical drift conditions for subgeometric rates of convergence.Ann. Appl. Prob. 14,13531377.Google Scholar
[13] Down, D.,Meyn, S. P. and Tweedie, R. L. (1995).Exponential and uniform ergodicity of Markov processes.Ann. Prob. 23,16711691.Google Scholar
[14] Fort, G. and Roberts, G. O. (2005).Subgeometric ergodicity of strong Markov processes.Ann. Appl. Prob. 15,15651589.CrossRefGoogle Scholar
[15] Gentil, I. and Maheux, P. (2015).Super-Poincaré and Nash-type inequalities for subordinated semigroups.Semigroup Forum 90,660693.Google Scholar
[16] Gordina, M.,Röckner, M. and Wang, F.-Y. (2011).Dimension-independent Harnack inequalities for subordinated semigroups.Potential Anal. 34,293307.Google Scholar
[17] Jacob, N.,Knopova, V.,Landwehr, S. and Schilling, R. L. (2012).A geometric interpretation of the transition density of a symmetric Lévy process.Sci. China Math. 55,10991126.Google Scholar
[18] Kühn, F. (2017).Existence and estimates of moments for Lévy-type processes.Stoch. Process. Appl. 127,10181041.Google Scholar
[19] Masuda, H. (2007).Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps.Stoch. Process. Appl. 117,3556.Google Scholar
[20] Meyn, S. P. and Tweedie, R. L. (1993).Stability of Markovian processes II: continuous-time processes and sampled chains.Adv. Appl. Prob. 25,487517.Google Scholar
[21] Meyn, S. P. and Tweedie, R. L. (1993).Stability of Markovian processes III: Foster‒Lyapunov criteria for continuous-time processes.Adv. Appl. Prob. 25,518548.Google Scholar
[22] Meyn, S. and Tweedie, R. L. (2009).Markov Chains and Stochastic Stability,2nd edn.Cambridge University Press.Google Scholar
[23] Röckner, M. and Wang, F.-Y. (2001).Weak Poincaré inequalities and L 2-convengence rates of Markov semigroups.J. Funct. Anal. 185,564603.Google Scholar
[24] Schilling, R. and Wang, J. (2012).Functional inequalities and subordination: stability of Nash and Poincaré inequalities.Math. Z. 272,921936.Google Scholar
[25] Schilling, R. L.,Song, R. and Vondraček, Z. (2012).Bernstein Functions: Theory and Applications(De Gruyter Stud. Math. 37),2nd edn.De Gruyter,Berlin.CrossRefGoogle Scholar
[26] Schilling, R. L.,Sztonyk, P. and Wang, J. (2012).Coupling property and gradient estimates of Lévy processes via the symbol.Bernoulli 18,11281149.Google Scholar
[27] Tweedie, R. L. (1994).Topological conditions enabling use of Harris methods in discrete and continuous time.Acta Appl. Math. 34,175188.Google Scholar
[28] Wang, F.-Y. and Wang, J. (2014).Harnack inequalities for stochastic equations driven by Lévy noise.J. Math. Anal. Appl. 410,513523.Google Scholar