Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T15:43:28.325Z Has data issue: false hasContentIssue false

Statistical Inference for Max-Stable Processes by Conditioning on Extreme Events

Published online by Cambridge University Press:  22 February 2016

Sebastian Engelke*
Affiliation:
Université de Lausanne and Georg-August-Universität Göttingen
Alexander Malinowski*
Affiliation:
Universität Mannheim and Georg-August-Universität Göttingen
Marco Oesting*
Affiliation:
Universität Mannheim
Martin Schlather*
Affiliation:
Universität Mannheim
*
Postal address: Université de Lausanne, UNIL-Dorigny, Bâtiment Extranef, 1015 Lausanne, Switzerland. Email address: [email protected]
∗∗ Postal address: Institut für Mathematik, Universität Mannheim, A5, 6, 68131 Mannheim, Germany.
∗∗∗∗ Postal address: INRA, UMR 518 Math. Info. Appli., Rue Claude Bernard, 75005 Paris, France. Email address: [email protected]
∗∗∗∗∗ Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we provide the basis for new methods of inference for max-stable processes ξ on general spaces that admit a certain incremental representation, which, in important cases, has a much simpler structure than the max-stable process itself. A corresponding peaks-over-threshold approach will incorporate all single events that are extreme in some sense and will therefore rely on a substantially larger amount of data in comparison to estimation procedures based on block maxima. Conditioning a process η in the max-domain of attraction of ξ on being extremal, several convergence results for the increments of η are proved. In a similar way, the shape functions of mixed moving maxima (M3) processes can be extracted from suitably conditioned single events η. Connecting the two approaches, transformation formulae for processes that admit both an incremental and an M3 representation are identified.

Type
General Applied Probability
Copyright
© Applied Probability Trust 

References

Basrak, B. and Segers, J. (2009). Regularly varying multivariate time series. Stoch. Process. Appl. 119, 10551080. (Erratum: 121 (2011), 896–898.)CrossRefGoogle Scholar
Blanchet, J. and Davison, A. C. (2011). Spatial modeling of extreme snow depth. Ann. Appl. Statist. 5, 16991725.CrossRefGoogle Scholar
Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Prob. 14, 732739.CrossRefGoogle Scholar
Cai, J.-J., Einmahl, J. H. J. and de Haan, L. (2011). Estimation of extreme risk regions under multivariate regular variation. Ann. Statist. 39, 18031826.CrossRefGoogle Scholar
Cooley, D., Davis, R. A. and Naveau, P. (2012). Approximating the conditional density given large observed values via a multivariate extremes framework, with application to environmental data. Ann. Appl. Statist. 6, 14061429.CrossRefGoogle Scholar
Davison, A. C. and Gholamrezaee, M. M. (2012). Geostatistics of extremes. Proc. R. Soc. London 468, 581608.Google Scholar
De Haan, L. (1984). A spectral representation for max-stable processes. Ann. Prob. 12, 11941204.Google Scholar
De Haan, L. and Ferreira, A. (2006). Extreme Value Theory. Springer, New York.CrossRefGoogle Scholar
De Haan, L. and Pereira, T. T. (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34, 146168.CrossRefGoogle Scholar
Dombry, C. and Ribatet, M. (2014). Functional regular variation, pareto processes and peaks over threshold. To appear in Statist. Interface.Google Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events: For Insurance and Finance. Springer, Berlin.CrossRefGoogle Scholar
Engelke, S., Kabluchko, Z. and Schlather, M. (2011). An equivalent representation of the Brown–Resnick process. Statist. Prob. Lett. 81, 11501154.CrossRefGoogle Scholar
Engelke, S., Malinowski, A., Kabluchko, Z. and Schlather, M. (2014). Estimation of Hüsler–Reiss distributions and Brown–Resnick processes. To appear in J. R. Statist. Soc. B. Available at http://uk.arxiv.org/abs/1207.6886.Google Scholar
Falk, M. and Tichy, D. (2012). Asymptotic conditional distribution of exceedance counts. Adv. Appl. Prob. 44, 270291.CrossRefGoogle Scholar
Ferreira, A. and de Haan, L. (2012). The generalized Pareto process; with a view towards application and simulation. Preprint. Available at http://uk.arxiv.org/abs/1203.2551.Google Scholar
Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris 9, 171173.Google Scholar
Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. With discussions and reply by the authors. J. R. Statist. Soc. Ser. B 66, 497546.CrossRefGoogle Scholar
Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: between independence and complete dependence. Statist. Prob. Lett. 7, 283286.CrossRefGoogle Scholar
Kabluchko, Z. (2011). Extremes of independent Gaussian processes. Extremes 14, 285310.CrossRefGoogle Scholar
Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to negative definite functions. Ann. Prob. 37, 20422065.CrossRefGoogle Scholar
Leadbetter, M. R. (1991). On a basis for ‘peaks over threshold’ modeling. Statist. Prob. Lett. 12, 357362.CrossRefGoogle Scholar
Meinguet, T. (2012). Maxima of moving maxima of continuous functions. Extremes 15, 267297.CrossRefGoogle Scholar
Meinguet, T. and Segers, J. (2010). Regularly varying time series in Banach spaces. Preprint. Available at http://uk.arxiv.org/abs/1001.3262.Google Scholar
Oesting, M., Kabluchko, Z. and Schlather, M. (2012). Simulation of Brown–Resnick processes. Extremes 15, 89107.CrossRefGoogle Scholar
Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc. 105, 263277.CrossRefGoogle Scholar
Resnick, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer, New York.Google Scholar
Resnick, S. I. and Roy, R. (1991). Random usc functions, max-stable processes and continuous choice. Ann. Appl. Prob. 1, 267292.CrossRefGoogle Scholar
Rootzén, H. and Tajvidi, N. (2006). Multivariate generalized Pareto distributions. Bernoulli 12, 917930.CrossRefGoogle Scholar
Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5, 3344.CrossRefGoogle Scholar
Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90, 139156.CrossRefGoogle Scholar
Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript. Available at http://www.unc.edu/~rls/.Google Scholar
Wang, Y. and Stoev, S. A. (2010). On the structure and representations of max-stable processes. Adv. Appl. Prob. 42, 855877.CrossRefGoogle Scholar
Whitt, W. (1970). Weak convergence of probability measures on the function space C[0,∞). Ann. Math. Statist. 41, 939944.CrossRefGoogle Scholar