Article contents
Stability conditions for some distributed systems: buffered random access systems
Published online by Cambridge University Press: 01 July 2016
Abstract
We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).
MSC classification
- Type
- General Applied Probability
- Information
- Copyright
- Copyright © Applied Probability Trust 1994
Footnotes
This research was supported in part by NSF grants NCR-9206315 and CCR-9201078, by AFOSR grant 90–0107, and in part by NATO Collaborative Grant 0057/89. This paper was revised while the author was visiting INRIA, Rocquencourt, France, and he wishes to thank INRIA (projects ALGO, MEVAL and REFLECS) for generous support.
References
- 199
- Cited by