Published online by Cambridge University Press: 01 July 2016
A triangle with vertices z1, z2, z3 in the complex plane may be denoted by a vector Z, Z = [z1, z2, z3]t. From a sequence of independent and identically distributed 3×3 circulants {Cj}∞1, we may generate from Z1 the sequence of vectors or triangles {Zj}∞1, by the rule Zj = CjZj–1 (j> 1), Z1=Z. The ‘shape’ of a set of points, the simplest case being three points in the plane has been defined by Kendall (1984). We give several alternative, ab initio discussions of the shape of a triangle, and proofs of a limit theorem for shape of the triangles in the sequence {Zj}∞1. In Appendix A, the shape concept is applied to the zeros of a cubic polynomial. Appendix B contains some further remarks about shape. Appendix C uses the methods of this paper to give proofs of generalizations of two old theorems on triangles.
This paper is dedicated to the memory of two old friends, Marc Kac and Elliot W. Montroll. Kac was drawn into mathematics by a dissatisfaction with Vieta's substitution. Montroll used circulants extensively. Both loved dealing with the simplest case.