Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T22:46:14.977Z Has data issue: false hasContentIssue false

Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions

Published online by Cambridge University Press:  01 July 2016

J.-P. Lepeltier*
Affiliation:
Université du Maine
A. Matoussi*
Affiliation:
Université du Maine
M. Xu*
Affiliation:
Université du Maine
*
Postal address: Département de Mathématiques, Laboratoire de Statistique et processus, Université du Maine, Bp 535, 72085 Le Mans Cedex, France.
Postal address: Département de Mathématiques, Laboratoire de Statistique et processus, Université du Maine, Bp 535, 72085 Le Mans Cedex, France.
Postal address: Département de Mathématiques, Laboratoire de Statistique et processus, Université du Maine, Bp 535, 72085 Le Mans Cedex, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the existence and uniqueness of the solution to certain reflected backward stochastic differential equations (RBSDEs) with one continuous barrier and deterministic terminal time, under monotonicity, and general increasing growth conditions on the associated coefficient. As an application, we obtain, in some constraint cases, the price of an American contingent claim as the unique solution of such an RBSDE.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2005 

References

Briand, Ph. and Carmona, R. (2000). BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13, 207238.CrossRefGoogle Scholar
Briand, Ph. et al. (2003). Lp solutions of backward stochastic differential equations. Stoch. Process. Appl. 108, 109129.CrossRefGoogle Scholar
Duffie, D. and Epstein, L. (1992). Stochastic differential utility. Econometrica 60, 353394.CrossRefGoogle Scholar
El Karoui, N. et al. (1997a). Reflected solutions of backward SDE's, and related obstacle problems for PDE's. Ann. Prob. 25, 702737.CrossRefGoogle Scholar
El Karoui, N., Pardoux, E. and Quenez, M. C. (1997b). Reflected backward SDEs and American options. In Numerical Methods in Finance, Cambridge University Press, pp. 215231.CrossRefGoogle Scholar
Matoussi, A. (1997). Reflected solutions of backward stochastic differential equations with continuous coefficient. Statist. Prob. Lett. 34, 347354.CrossRefGoogle Scholar
Pardoux, E. (1999). BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis, Differential Equations and Control, eds Clarke, F. H. and Stern, R. J., Kluwer, Dordrecht, pp. 503549.CrossRefGoogle Scholar
Pardoux, E. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, 5561.CrossRefGoogle Scholar