Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:48:19.605Z Has data issue: false hasContentIssue false

The range of a simple random walk on ℤ

Published online by Cambridge University Press:  01 July 2016

P. Vallois*
Affiliation:
Université de Nancy I

Abstract

Let θ (a) be the first time when the range (Rn; n ≧ 0) is equal to a, Rn being equal to the difference of the maximum and the minimum, taken at time n, of a simple random walk on ℤ. We compute the g.f. of θ (a); this allows us to compute the distributions of θ (a) and Rn. We also investigate the asymptotic behaviour of θ (n), n going to infinity.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1996 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chosid, L. and Isaac, R. (1978) On the range of recurrent Markov chains. Ann. Prob. 6, 680687.Google Scholar
[2] Chosid, L. and Isaac, R. (1980) Correction to ‘On the range of recurrent Markov chains’. Ann. Prob. 8, 1000.Google Scholar
[3] Daudin, J. J. (1996) Etude de l'amplitude d'une marche aléatoire de Bernoulli. Operat. Res. 30, 97106.Google Scholar
[4] Dvoretsky, A. and Erdos, P. (1951) Some problems on random walk in space. Second Berkeley Symp. Math. Statist. Prob. 353368.Google Scholar
[5] Feller, W. (1951) The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist. 22, 427432.Google Scholar
[6] Glynn, P. W. (1985) On the range of a regenerative sequence. Stoch. Proc. Appl. 20, 105113.Google Scholar
[7] Hooghiemstra, G. (1987) On functionals of the adjusted range. J. Appl. Prob. 24, 252257.Google Scholar
[8] Imhof, J. P. (1985) On the range of Brownian motion and its inverse process. Ann. Prob. 13, 10111017.CrossRefGoogle Scholar
[9] Imhof, J. P. (1992) A construction of the Brownian motion path from BES (3) pièces. Stoch. Proc. Appl. 43, 345353.Google Scholar
[10] Jain, N. C. and Orey, S. (1968) On the range of random walk. Israel J. Math. 6, 373380.CrossRefGoogle Scholar
[11] Jain, N. C. and Pruitt, W. E. (1972) The range of random walk. Sixth Berkeley Symp. Math. Statist. Prob. 3, 3150.Google Scholar
[12] Prabhu, N. U. (1980) Stochastic Storage Processes. Applications of Mathematics. Springer, Berlin.Google Scholar
[13] Spitzer, F. (1964) Principles of Random Walks. Van Nostrand, New York.Google Scholar
[14] Tapiero, S. and Vallois, P. (1995) Moments of an amplitude process in a random walk and approximations: computations and applications. Operat. Res. 29, 117.Google Scholar
[15] Tapiero, S. and Vallois, P. (1995) The average run length for the control of the range in asymmetric random walk. Preprint. Google Scholar
[16] Troutman, B. M. (1983) Weak convergence of the adjusted range of cumulative sums of exchangeable random variables. J. Appl. Prob. 20, 297304.Google Scholar
[17] Vallois, P. (1993) On the range process of a Bernoulli random walk. In Proc. Sixth Int. Symp. on Applied Stochastic Models and Data Analysis. Vol. II. ed. Jansen, J. and Skiadas, C. World Scientific, Singapore. pp. 10201031.Google Scholar
[18] Vallois, P. (1993) Diffusion arrêtée au premier instant où le processus de l'amplitude atteint un niveau donné. Stoch. Stoch. Rep. 43, 93115.Google Scholar
[19] Vallois, P. (1995) Decomposing the Brownian path via the range process. Stoch. Proc. Appl. 55, 211226.Google Scholar